
UNCLASSIFIED

AD NUMBER

AD489667

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; Aug 1966.
Other requests shall be referred to Rome
Air Development Center, Attn: EMLI,
Griffiss AFB, NY 13440.

AUTHORITY

RADC, USAF ltr, 17 Sep 1971

THIS PAGE IS UNCLASSIFIED

I

SRArC--TR-66-474, Volome It
Fai-o Report

REIJABLITY CENTRAL AUTOMATIC DATA PROCESSING SUBSYSiEM

Design Specification Report (Cont'd)

Auerbach Corporation

TECHN!CAL REPORT NG. RADC-TR- 66-474
Augsst 1966

"This document is subject to special
export controls and each transmittal
to foreign governments or foreigp
nationals may be made only with
prior approval of RADC (EMLI),
GAFB, N.Y. 13440.

Rome Air Development Center
Research and Technology Division

Air Force Systems Command
Griffiss Air Force Bass, New York

When US Government drawings, specifications, cr other data are used for any purpose other

than a definitely related government procurement operation, the government thereby incurs
no responsiE~lity nor any obligation whatsoevwr;.and the fact rhat the government mav have
for'uuiacad. furnishbd, ,. in any way supplied the said drawings. specifications.r othcr
data is not to be regarded, by implication or otherwise, as in any manner licensing h.

holder or any other person or corporation, or conveying any rights or permission to manu-

fa turer, use, or sell any, patented invention that may in any way be related thereto.

Sii•, •r r~rc tiit, copy. Retain or dcestroy.

DISCLAIE NOTICI
\ \C

THIS rDOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISIED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

REPRODUCED FROM
BEST AVAILABLE COPY

RELIABILITY CENTRAL AUTOMATIC DATA PROCESSING SUBSYSTEM

Design Specification Report (Cont'd)

Auerbach Corporation

This document is subject to special
export controls and each transmittf.l
to foreign governments or foreign
nationals may he made only with
pr;,,r approval of RADC (EMLI),
GAFH. N.Y 13440.

MAINLINf rN(IFIZ .ar"! M I'!, SHADE, N.J.
q/23/ 6 240

(

FOREWORD

This three-volume final technical report was prepared by the

Auerbach Corporation, Philadelphia 3, Pennsylvania under Contract AF

30(602)-3820, Project 5519. it is identified by the contractor as

1280-TR. The authors were Dr. J. Sablc, W. Crowley, M. Rosenthal, S.

Forst, and P. Harper. The Rome Air Development Center Project Engineer

was Casper DeFiore, DIID.

This technical report contains information embargoed from release

to the Clearinghouse for Federal Scientific and Technical Information,

Department of Commerce, by AFR 4O0-10.

This technical report has been reviewed and is approved.

Approved: TI

C FRANIK J.. T AIINII

Chief, Information Processing Branch

Approved: f
JAME J. DIMEL, Colonel, USAF
Chief, Intel & Info Processing Division

FOR THE COMADE

Chief, A)dnced Studies Group

ii I

ABSTRACT

This is Volume Y! of the mree-volume final report produced for Ohl: Rnmp
Air Development Center (RADC) under ,i , '3iumesI and II
"i.,isthute the Design ,Specification Report for the Automatic Data Processing Subsystem
(ADPS) of Reliability Central, known as Data Manager-1 (DM-1). Valume I1H is a survey
of major, computer-oriented, on-line information and fact retrieval systems.

This volume contains a detailed description of the data pool and directories,
and the technical documentation and flow charts for the system program and jobs. It
presents the system components which provide for the following functions of DM-l:

(1) Programming Services. The DM-1 Service Package acts
as an 'ntermediaiFybetween the data pool and running
pr:gn ms which need tc ncclss and store data.

(2) Sstein Supervision. The Request Processor rezponds to
uests for t'e execution of jobs in the DM71 library.

JTb Manager supervises the exchanges of control
among the operational, system, and user programs.

(3) Job Library Maintenance. A set of system jobs, ovides
for entering programs with their parameter descriptions
into the library, describing jobs as combinations of pro-
grams and jobs, deleting programs and job descriptions
from the library, and displaying job descriptions from
the library for review.

(4) Directora -,nd Data Manipulation. A set of system jobs
provides 1)r adding and deleting item structure definitions
in the dire tory, and adding, deleting, replacing, and
modifying data In the data pool.

(5) User Utility Support. A set of system jobs provides for
querying the data pool, developing new data Items from
combinations of existing data, and displaying the results
of queries and the values of data pool Items.

(6) [) "ilo tqJro'edurv A set of system joLs which allow the
tiser to approach the I)M- I dat.-i pool without knowirg the
CO phletv spe(-ifi(.ation for the inforrmation

iii

I
TABLE OF CONTENTS

PARtAGRAPH T-rr- PAGE

SECTION I. INTRODUCTION

SECTION I1. SYSTEM DATA POOL

2.1 ITEM STRUCTURES 2-1

2.2 DATA POOL 2-4

2.3 ITEM LIST 2-5

2.4 TERM LIST 2-7

2.5 TERM ENCODING TABLE 2-7

2.6 INDEX TABLES 2-8

2.7 LINKAGE TABLE 2-10

2.8 USER ACCESS/MODIFICATION RIGHTS TABLES 2-11

2.9 PROGRAM AND,/B DESCRIPTION LIBRARY 2-13

2.10 DATA SEGMENTS 2-16

2.10.1 Segment Head. 2-16
2.10.2 Segm ent Index 2-17
2.10.3 Segment Body 2-18
2.10.4 Partition between Segments 2-18

2.11 SEGMENT NAME LIST 2-18

2.12 DIRECTORY FORMAT 2-20

SECTION III. DM -1 SERVICE PACKAGE

3.1 BOOKKEEPING 3-2

3.1. 1 Level Pushdown List 3-2
3.1.2 Access Parameter Table 3-5
3.1.3 Item List Table 3-5
3.1.4 Segment Index 3-7
3.1.5 Missing Data Indicators 3-7
3.1.6 Bookkeeping Service Routines 3-8

3.2 SEGMENTATION 3-9

3.3 TRANSLATION 3-11

3.4 MAINTENANCE 3-12

3.5 BASIC USER SERv7'rE. 3-13

3.6 COMPOUND USER SERVICES 3-14

(V

TABLE OF CONTENTS (CONTO.)

PARAGRAPH TITLE PAGE

3.7 DETAILED DESCRIPTION OF SERVICE ROUT1INES 3-16

3.7.1 Fetch Segment 3-17
3.7.2 Name Segment 3-19
3.7.3 Locate IL Entry 3-22
q 4 Step Lists 3-25
3.,1.5 DT~count itemr 3-27
3.7.6 Step Item 3-30
3.7.7 Define Field 3-33
3.7.8 Get Next SX 3-35
3.7.9 Skip Item 3-37
3.7.10 Dcfine Segment 3-39
3.7.11 Read .. 3-41
3.7.12 W rite .. 3-45
3.7.13 Locate Item 3-49
3.7.14 Seek .. 3-51
3.7.15 Seek with Copy 3-54

SECTION IV. J013 SUPERVISOR

4.1 DYNAMIC TASK LIST 4-1

4.2 REQUEST PROCESSOR 4-2

4.3 JOB MANAGER 4-5

4.4 JOB EXTENSION 4-6

4.5 TEMPORARY ITEMS REQUIRED BY JOB SUPERVISOR 4-8

4.5.1 Reserved Cire Items 4-9
4.5.2 Request File 4-9
4.5.3 Request Directory 4-11
4.5,4 Scratch item s 4-11

4.6 DETAILED DESCRIPTION OF JOB SUPERVISOR PROGRAMS.. 4-11

4.6.1 RQ Bootstrap 4-12
4.6.2 Task Terminate 4-16
4.6.3 RQ Scan 4-18
4.6.4 Specify Item 4-22
4.6.5 Update DTL 4-27
4.6.6 RQ Terminate 4-31
4.6.7 JX Processor (Resident Portion) 4-34
4.6.8 JX 'can 4-37

Vi.. .ii

TABLE OF CONTENTS (CoNTo.)

PARAGRAPH TIT LE PA,•..

SECTION V. JOB LIBRARY MAINTENANCE JOBS

5.1 PROGRAM ENTRY 5-1

5,1.1 Functional Description 5-2
5.1.2 inputs 5-3
5.1.3 Results 5-4
5.1.4 Directories Used 5-4
U. .. 0 SeLrvits Uob 5-4
5.1.6 Jobs Used 5-4 i
5.1.7 Method of Operation 5-5

5.2 JOB DESCRIPTION 5-32

5.2.1 Functional Description 5-35
5.2.2 Inputs 5-36 I
5.2.3 Results 5-37
5.2.4 Director'ies Used 5-37
5.2.5 Services Used 5-37 I
5.2.6 Jobs UTh,. 5-38

5.2.7 Method of Operation 5-38

5.3 JOB AND PROGRAM DELETION 5-68

5.3.1 Functional Description 5-68
5.3.2 Inputs 5-68
5.3.3 Results 5-68
5.3.4 Directories Used 5-68
5.3.5 Services Used 5-69
5.3.6 Jobs Used 5-69
5.3.7 Method of Operation 5-69

5.4 DISPLAY .JOB DESCRIPTION 5-84

5.4.1 Functional Des cription 5-84
5.4.2 Inputs 5-84
5.4.3 Results 5-84
5.4.4 Directories Used 5-84
5.4.5 Services Used 5-84
5.4.6 Jobs Used 5-85
5.4.7 Method of Operation 5-85

SECTION VI. DATA POOL MAINTENANCE JOBS

6.1 ITEM DEFINITION MANIPULATION 6-2

6.1.1 Define Item 6-3
6.1.2 Delete Definition 6-11
6.1.3 Delete Node 6-15
6.1.4 Renovate Item 6-18

(.
Yi I

I

TABLE OF CONTENTS (CONTD.)

PARAGR/ P!ý T!TLE PAGE

6.2 DATA MANIPULATION 6-25

6.2.1 Add Data 6-26
6.2.2 Replace Data 6-39

S_ M odify Data 6-43
6.2.4 Update Data 6-47
6.2.5 Delete Data 6-52
6.2.6 Compress File 6-62

6.3 INDEXING 6-71
6.3.1 InDleX 6-71
6.3.2 Remove Index 6-79

6.4 LINKAGE 6-82

6.4.1 Link ... 6-82

6, 4.2 Delete Link 6-87

6.5 OTHER MAINTENANCE JOBS 6-91

6.5.1 Data Secur ity 6-91
6.5.2 External to Internal Data Conversion 6-93

SECTION VII. UTILITY JOBS

7.1 QUERY 7-1

7.!. I Functional Description 7-2
7. Inputs 7-2..
7.1.3 Results 7-2
7.1.4 Directories Use(l 7-3
7.1.5 Services Used 7-3
7.1.6 Jobs Used. 7-3
7.1.7 Method of Operation 7-4

7.2 CONDITIONAL REFORMAT 7-91

7.2 .1 Functional Description 7-91
7.2.2 Inputs 7-91
7.2.3 Results 7-91
7.2.4 Directories Used........... 7-91
7.2.5 Services Used 7-91
7.',o 6 Jobs Used 7-92
7.2,7 Meth(xt of Operation 7-92

SECTION VIII. THE INPUT SCANNER

8. 1 ACTION-GRAP HS 8-1

8.2 ADDRESS LISTS 8-3

Viii

TABLE OF CONTENTS (CoN,-o.) .

PARAGRAPH TITL.

8 .3 IN SC A N
8.3.1 Functional Description "
8 .3 .2 Inp uts
8 .3 .3 R esults
8.3.4 Indicator Cells Required
8 .3 .5 T ables R ead ..
8 .3.6 T ables M odified),
8.3.7 Method of Operation-

8.4 INSCAN EXAMPLES

SECTION IX. THE DIALOGUE PROCEDURE

9.1 INT RO DUC T IO N ..

9 .1.1 N eed for a D ialogue
9.1,2 The Diaiogue Principle ..

9.2 TH E DIALO GUE IN DM- 1

9.2.1 Use of the Data-Pool Structure
9.2.2 Object of the Dialogue Procedure
9.2.3 Uses of the Dialogue Procedure

9.3 THE DIALOGUE PROCEDURE .. ,
9.3.1 Structure of the Dialogue Query ,-.

9.3.2 Consolk Dialogue L;xample

9.3.3 Display Development in the Example

9.4 EXPLANATION OF LOGICAL DESIGN

9.4 1 Phase 1 Display and Select
9 .4 .2 P hase 1. T e rm ination
9 .4.3 P hase 2: D isplay and Select
9.4.4 Phase 2: Value Selection
9.4.5 Phase 2: Condition Developm ent _..
9.4.6 Phase 2. Termination :. .

9 .5 1)E'T A II E I) D)E SIG N

9.5.1 Phase I. Initialization and DWT Setup

ix- ~Best Available Copy

TABLE OF CONTENTS (CoNTEr) _ _

PAR4AGRAP,. TIT L-: PAGE

9.5.2 Phase P Selection Diag-osis 9-46
9,5.3 PHiase I Console Display ... 9-48
9.5.4 Phale I -nmograp Dialogue - Io 9-49
9,5.5 Phase 1 Homograph Dialogue - II 9-50
9.5.6 Phase I il•omograph Dialogue - Ill.............................. 9-5C
9 .5.7 P hase I O ption 9- 51
9.5.8 P hase I. T ransferor Deiete .. 9- 52
9.5.9 Phase I - Term,: afion 9-52
9.5.10 Phase 2 lhiti3li.-atior, and DWT Setup 9-53

9.5.11 Phase 2 Se-lection Diagn om i ... 9- 54
9.5.12 P !!ase 2 Console D isplay ... 9- 55
9.5.13 Phase 2 0;i-n ... 9-56
9.5.14 Pi-base 2 Terminal Sele-tion -. I 9-56
9.5.15 PLase 2 Terminal Selection - II 9-57
9.5.16 Ph ase 2 Termination - I 9-58

9.5,17 P hase 2 Term ination - II.............. ... 3 - 59
9 5. 8 Istetrieve Node IL Entry (Subre,Ytine) ... 9- 9
9 5.19 Create [CC'. and Obtain IL Entries (Subroutine). "....................... 9-61
9.5.20 S.'etup Output Buffer - I (Subroutine) 9-62
9.5.21 Stup Output Buffer - 11 (Subroutine) 9-63
9.5.22 Display (Delete) Selected Items - I (Subroutine) 9-63

9.5.23 Display (Delot-J- Selected Items - 1I (Subroutine) 9-64
9. ',. '- 4 SeL NIV = Number Indexed Values (Subroutine) 9-65

9.5,i5 Display E;ght Ranges - I (Subroutine) 9-66
9.5 26 Displaý Eight Ranges - I! (Subroutine) ... 9-66
9.5.27 Display Fight Rangts - III (,-jbroutne) 9-67
9.6 EXPLANATION OF TERMS AND PARAMETERS 9-95

9 .6 .1 G e ne rak 9 - 9 5
9.6.2 Display Work Table (DWT) 9-95

9.6.3 Disrlay Work Table (DW ' ..) .. 9-95

xC

• I r :

TABLE OF CONTENTS (CONYo.)

PARAGRAPH TITrLE PAGE

9.6.4 Y."ant List (W L)1...... 9-97

9.6.5 Condition Value Table (CVT) 9-97

9.6.6 Control Word (CW)j................................ 9-917

9,6.7 Option Contml Word (0GW) .. 9-98

9.6.8 Vasue Lange, Table (VET) 9-98
9.6.9 Term Encoding Table (TET)... 9-98

9.6.10 Item List (IL) .. 9-98

9.6.11 Term List (TL) I.. I........... ...- 9--98

9.6.12 Field Value Table (FVT)...;........ ...I..... 9-99

9.7 TIMING ESTIMATES... 9-107

9.8 TECHNICAL NOTE ON POPULATION ESTIMATES 9-113

9.8.1 Population' Estimate With a One-Lecvel File 9-114

9.8.2 The Situation W'ith Multilevel StructuresI.................. 9-115

APPENDIX A. RELIABILITY CTNTRAL TEST OPERATION

APPENDIX B. RELIABIL TTY CENTRAL
SCHEDULED OUTPUTS

(X1

A,

LIST OF ILLUSTRATIONS

Firouitr TITLE PACE

2-1 System Data Pool 2-3

2-2 An ndexed Field in the Data Base 2-9

4-1 Dynamic Task List 4-3

4-2 Overview of Request Processor 4-4

4-3 Static Task List 4-4

4-4 Flow of Task in a Job 4-7

4-5 Request File 4-10

5-1 The Program Entry Job 5-6

5-2 Unit Job, Internal Job Description 5-19

5-3 Job Description Job, Internal Job Description 5-38

5-4 Binding Job, Internal Job Description 5-50

5-5 Job Deletion Job, Internal Job Description 5-70

5-6 Auxiliary Deletion Job, Internal Job Description 5-80

7-1 Query Job, Internal Job Descr'Aption 7-4

1-2 Typical Data Structure 7-8

7-3 Set Calculus Definitions -10

7-4 Set Calculus Theorems 7-10

7-5 Conditional Search, Internal .Tob Description 7-13

7-6 Reformat Job, Internal Job Description 7-54

7-7 Conditional Reformat Job, Internal Job Description 7-93

8-1 An Action-Graph 8-2

8-2 Shape Codes 8-3

8-3 The Address Lists 8-4

8-4 Inscan Flow Chart 8-5

8..5 Inscan Example 8-8

8-6 Infix tr '- ffix Operator Translator 8-10

9-1 Structure of Purchasing Data Base 9-16

9-2 Display and Select . .. 9-39

9-3 Phase 1: Termination 9-40

9-4 Phase 2: Display and Select 9-41

9-5 Phase 2. Value Selection 9-42

9-6 Phase 2: Condition Development 9-43

xii

LIST OF ILLUSTRATION'S
(Figure Title Page

9-7 Phase 2: Termination .. 9-44

9-8 Phase 1: Initiatization and DWT Setup 9-68

9-9 Phase 1: Selection Diagnosis 9-69

9-10 Phase 1: Console Display 9-70

9-11 Homograph* Dialogue - I 9-71

9-12 Phase 1: Homograph Dialogue - II 9-72

9-13 Phase I: Homograph Dialogue - II 9.-73

9-14 Phase 1; Option 9-74

9-15 Phase 1: Transfer or Delete 9-75

9-16 Phase 1: Termination 9-76

9-17 Phase 2: Initialization and DWT Setup 9-77

9-18 Phase 2: Selection Diagnosis 9-78

9-19 Phase 2: Console Display 9-79

9-26' Phase 2. Option 9-80

9-21 Phase 2: Terminal Selection- I 9-81

9-22 Phase 2: Terminal Selection -1 9-82

9-23 Phase 2: Termination - I 9-83

9-24 Phase 2: Termination - I 9-84

9-25 Retrieve Node Il Entry .. 9-85

9-26 Create ICC's and Obtain IL Entries 9-86

9-27 Set Up Output Buffer - I 9-87

9-28 Set Up Output Buffer - I! 9-88

9-29 Display (Delete) Selected Items - I 9-89

9-30 Display (Delete) Selected Items - I 9-90

9-31 Set NIV - Number Indexed Values 9-91

9-32 Display Eight Ranges - I 9-92 /
9-33 Display Eight Ranges - I! 9-93

9-34 Display Eight Ranges - I1 9-9 /
//

SC
•i ~xt ti

LIST OF TABLES

TABLit TITL'. PAGE

1-1 DESCRIPTION OF DM-l COMk)NENTS 1-3

2-1 DERIVATION OF LOGICAL NAME FROM ITEM POSITION 2-2

2-2 ITEM TY ES 2-2

2-3 STRUCT RE OF THE DATA POOL 2-21

ý-l FORA OF LEVEL PUSHDOWN LIST : 3-3

3-2 DEFI TION OF PURCHASING ITEM 3-4

3-3 LPL OR PRICE FIELD 3-5

3-4 LP-P FOR YEAR FIELD 3-5

3-5 7EM LIST TABLE 3-6

7-1 iOGICAL CONDITIONS 7-7
/9-1 DIRECTORY SC'HEMATIC 9-31

9--2, PHASE 2: TERMINATION 969-2 PAS 2 TRMIATON................................... 9-60

9 ABBREVIATIONS/NAMES USED IN FLOW, CHARTS 9-96

174 DWT (DISPLAY WORK TABLE) .. 9-100

/9-5 DWT I (DISPLAY WORK TABLE 1) 9-101

/9-6 WL ,WANT LIST) ... 9-102
9-7 CVT (CONDITION VALIJE TABLE) 9-103

9-8 CONTPOL WORD 9-104

9-10 VHT tVALUE RANC(7 TABLE) 9-105

9-11 TERY •NCODING TAR'BE (TET) 9-106

9-1L TIMING ESTIMArES 9-112

C. 1
xiv

• lnr w ,uM •i ,n m ,• r ••.w m m•tmm ll • n a T

(I

SECTION I. INTRODUCTION

Data Manager-1 (DM-1), a computer software system, is designed for the

Rome Air Development Center to operate as the Automatic Data Processing subsystem

(ADPS) of Reliability Central. DM-1 consists of a data pool, a series ýýF system pro-

grams and Inbs that control the system and provide for the management and mar.!pulation

of data, and provisions for tailoring the system to the requirements of an application by

the specification of descriptive and declarative information and the addition of programs

to the DM-1 complement.

The data pool contains a data base, a set of ditectories which include a library

of Jobs and programs, and logical provisions for retaining work data and scratch data

under system control. The data pool is described in detatl in Section II. The structure

of the data pool 13 described, along with the rules for structurtn, the application data

base and the work items. Each of the directory elements is defined in terms of the

structure and its uses in the system. The DI;-1 approach to segmentation, which pro-

vides for the storage of the data and directories on a variety of random-access storage

devices, is also explained in Section H.

(
1-1

The operational programs of the DM-1 system are presented in Sections III

and IV. Section Mi contains the technical documentation for the DM-1 Service Pacage.

This consists of a set of system routines which function like an I/O control system.

The routines respond to requests from programs for the storage and access of data in

the data pool. S-:"tion lV contains the technical documentation for the DM-1 Supervisor.

This consists of a Request Processor and a Job Manager which work together to control

the execution of system and user jobs.

The programs of the Service Package and the Supervisor are presented in a

standard format which is used throughout this volume. The standard format contains

paragraphs in the following order:

(1) Functional Description,

(2) Inputs,

(3) Results,

(4) Directories Used,

(5) Services Used,

(6) Jobs Used,

(7) Method of Operation (followed by flow chart or charts)

Sections V, VI, and VII contain the technical documentation for the system

jobs which perform the job-library maintenance, data-pool maintenance and user-utility

functions of the system. Section VIII contains the description of the Input Scan Routine

which is used by the language processors to perform a syntax-directed scan of text in

one of the system languages. These jobs and routines are presented in the standard

format.

Table 1-1 describes the DM-1 components and explains the role played by each

component in the system. Many of these componenta oontain subelements at a lower level

of detail. For ex.mnple, the Service Package consists of many small routines and the

system jobe are frequently composed of a %ries of task programs. These details are

presented with the tecluical documentation in the appropriate sections.

1-2

TABLE 1-1. DESCRIPTION OF DM-l COMPONENTS

Function Name Description

Programming Service Package Acts as intermediary between running programs
Services and the data in the data pool. Handles the mech-

anics of interpreting the data in terms of the
directory, segment packing and unpacking, and
conversions between the machine-independent
se-ment format and computer-oriented format.
Transmits data between the data pool and the
program's buffer.

System Request Processor Prepares a request record for job execution.
Supervision

Job Manager Manages transitions of control among operational
system and user programs.

Job Library Program Entry Adds a new program to the job library with a
Maintenance description of its .nput and output items.

Job Description Adds a new job, consisting of a sequence of
defined jobs and entered programs, to the job
library.

Job Deletion Deletes a job, defined in an earlier program entry
or job description, from the job library.

Display Job Displays the components of a job, showing the
Description rtlationships among their input and output

parameters.

Item Structure Define Item Adds the definition of a new item to a nodei in the
Manipulation data-pool structure.

Deiete Definition Deletes the item definition at a specified node in
the data-pool structure.

Delete Node Deletes the item definition at a specified node in
the data-pool structure, eliminates the node. ind
adjusts internal item identifiers.

Rtenovate Itemi Deletes all unused nodes subsumed by a specified
item as in Delete Node.

Data Manipula- Convert External Converta data fromn an external mediutm into an
tion Data item in the data pool.

Convert IDL. Converts data in the Internal Data Language itito
an Item in the data pool.

1

r

TABLE 1-1. DESCRIPTION OF DM-1 COMPONENTS (Contd.)

Function Name Description

Data Manipula- Add Data Maps data from a source item into the se+ of
tion empty data positions defined by a name and a

condition.

Replace Data Replaces the data in the data posittor,. defined
by a name and a condition with the data in a source
item.

Modify Data Calculates a value for a designated attribute and
replaces the values of the field, defined by its
name and a condition, with the calculated value.

Update Data Replaceb valli's in the records of a master file
with values obtained fr'm a transaction file
identifying the records to be up'dated.

Delete Data Deletes the values for a named item at the data
poonitiors defined by a condition.

Compress File Eliminates null records (from earlier deletes)
from a file containing indexed fields, and updates
the record lists in the index tables.

Storage and Index Creates an inverted file relating the values taken
RetrW val on by a field to the record numbers of the data
Ffficiency positions where the values occur.

Remove Index Elimnates the inverted tiie for a prev'ously
indexed field.

Link Establishes a conditional, logical link between
data on separate stems of the data-pool tree
structure.

Delete Link Eliminates the logical connection created by a
previous link request.

Data Security Add User Establishes and identifies a new user of DM-1
•'.'mtrol services and assigns his security restriction

level for data access and modification.

Delete User Eliminates a user from the active list.

Add Access Defines specific .tems, outside the user's security
Rights restriction level, which may be accessed by a

specific user.

C1

1-4

V2

TABLE 1-1. DESCRIPTION OF DM-I COMPONENTS (Contd.)

Function Name Description

Data Security Delete Access Eliminates specific access rights previously
Control Rights assigned to a user.

Add Modification Defines specific items, outside the user's
Rights security restriction level, which may be modi-

fied by a specific user.

Delete Modifica- Eliminates specific modification rights pre-
tion Rights viously assigned to a user.

User Utility Query Retrieves and displays the data relevant to a
user's information need The need is expressed
by naming the attributes which describe the object
of interest and providing an arbitrary logical

condition which specifies the characteristics of
the individual objects of interest.

Conditional Retrieves selected data, restructures it, and
Reformat maps it into an output item in the data base or

work area. The desired data is specified as
with Query.

Display Displays the data valucý for a specified set of
iteias under the control of a formrt statement.

Dialogue Query Guides a user to specify the attributes and
condition that define his information need, through
a multistage -'ialogue with the system.

System Utility Conditional Develops a record number list which defines the
Search item positions specified by an arbitrarily com-

plex logic condition.

Input Scan Scans a stream of alphanumeric rAhtracters in a
Routine language defftntd by an action-graph. Performs

a syntax check and permits language processors
to execute appropriate routines at action points
in the scan.

,,t .

1-

SECTION II. SYSTEM DATA POOL

DM-1 is a data processing system, and, in common with all other such

systems, its elements are programs and data. This section is devoted to a description

of the data, and the succeeding sections describe the programs.

The most undiscriminating term used for data is the r'tta pool. The data potA

includes the data base, working and scratch data, and the directories. A structural

diagram of the data pool, before any data has been added to the data base, is illustrated

in Figure 2-1. The ovals and rectangles show the primary items which subsume all

other items of the data-pool structure.

This section will describe item structures, segment formats for the physical

storage of data, and complete substructures for each directory iWm named in Figure 2-1.

2A1 ITEM STRUCTURES

Item is a generic term in the data description language of DM-i. Figure 2-1

provide.s term names (e. g., lDta Pool) for nineteen items, and it partially defines the

logical structure of the data pool. The tmethod of &,riving logical names from the

2"1 I
4

relative ,:sition of the item within the strk,-ture is also illustratvd. Several i,•rFA

are given in Table 2-1.

TABLE 2-1. DF. -1VATION OF LOGIC ,L NAME FROM ITEM 1Po1TIO,

Logical Name
Term Name Item Class C(L.e (IC.)

Directory 1.2
Job List 1.2.10
Scratch Area 1.4

Figure 2-1 also introduces two of the specific item tV•es, the statenw ,

the file. The complete Int of item types is shown ;n Table 2 -2.

TABLE 2-2. ITEM. TYPES

Type Abbreviation S,'mhaA]

Statement S

File F EZZ_?]
Record R <---"

Field f

Null Node N

Source Link, L

Target Link L J Z

2-2

. i :k

_ -C'jj Data Base

SDirecntories

S-. •j Term Encoding Table

2 Item List

-L---]- Term Lst

Linkage Table

I Fields File

6 Shadow Of Fi.lds File

-KHZI_] Segment Name List

8 (7 Program List

9] Program Description List

10 Job List

-1 I Job Description List

4 1. User List

Access Rights

L Modification Rights

3 Work Items

'1Scratch Area

Figure 2-1. System Data Pool

2-3

Fields ar 'Rirther subdivided by ty.pe as follows-

alphanumeric (A)

floatins point E

integor MI

octal (0)
binary (
B-S format AH

An item definiti,.rn is a description of a data-pool item with its subsumed items.

In computer input form, the item definition is called an item image. The relationship

of items in a structure is quite flexible, and there are certain rules which must be

observed.

(1) A record is the only item which may be directly
subsumed by a file.

(2) Link items must subsume fields.

(3) Fields and null nodes are terminal items (they

subsume nothing).

2.2 DATA POOL

The item identified as the data pool in Figure 2-1 has four subsumed items that

are identified as statements.

The data base is the repository for the great mass of data which is to be re-

trieved and maintained by DM-1. The structure is defined only through the data-pool

maintenance jobs described in Section VI. For speed of retrieval, this data may be in-

dexed and linked.

Work items may be written by user programs. Indexing and linkage are not

permitted. This section of the data pool is designed to receive outputs written by a job

which must be preserved Until Lnother job is run, but after which the data is of no

further use. Queries will be satisfied, while this data exists, but since the data may

not be indexed, random retrieval will be slow.

2-4

The scratch area is even more temporary. It Is used for intermediate data

in the course of executing a job. At the termination of a *ob request, both the data and

its definition are destroyed.

All of the data in these three, separate, logical sections of the data pool is

defined in the directories, and all data (including the directories) is formatted into data

segments as described in Paragraph 2. 10.

2.3 ITEM LIST

When items are defined, all of .he information provided in the definition,

except for term name and units, is stored in the Item List. No data can be stored or

retrieved without the Item List to serve as a key. The Item List is a file ordered by the

logical name, the ICC, of its items. The ICC is not included in the recods, because it

can be calculated. The Item List records conta ine fields which provide a definition

of the structure of the data pool and a set of systei, ,arameters describing each item.

The Item List file has the following structure:

ITEM LIST, F
RESERVED, B, 10
SRL- ACCESS, 0, 1
SRL - MODIFICATION, ý, 1
INDEX CODE, B, 2
ITEM TYPE, B, 6
OPTION CODE, B, 1
ITEM SIZE, I, 11
1-O DATA FLAG, B, 2
RECORr NJMBER, 4, 16

The fields of the Item List are described as follows:

(1) Res - ved. Lais is a ten-bit field that Is reserved
for future use.

(2) SRL-Access This Is a three-bit field which specifies
the security restriction level of the item for access.
The code 0 stands for an unrestricted item, and the
code 6 Is Ele highest restriction. To access an item
without special access rights, a user must have an
SRL greater than the SRL of the item.

- 2-5i ¢

,(3) SRL-Modification. This is a three-bit field that works
like the preceding field for modification of the item
by a user.

(4) Index Code. This is a two-bit field which specifies
the kind of indexing associated with a field item.
The codes have the follnwing meanings:

00 - not indexed
01 - indexed by list
10 - indexed by range
11 - indexed by all values

(5) Item Type. This is a six-bit field which is coded to
represent the item type. TI.; codes correspond to the
following item types:

000000 - null node
000001 - statemen't
000010 - file
000011 - record
000100 - source link
000101 - target link
100000 - floating point field
100001 - integer field
100011 - octal field
100100 - decimal field
100110 - B-S format field
101001 - alphanumeric field
110001 - binary field

(6) Option Code. This is a one-bit field. It contains a 0
if the item is required, or a I if the il -m is optional.

(7) Item Size. This is an eleven-bit field. It contains a
sign and ten bits which represent item sizes of 1
through 1023. A size of 0 means that the item is
variable in length.

(8) No Data Flag. This is a two-bit field which is used
by the system to spec Lfy whether a definition has
corresponding data or not.

(9) Record Number. This is a sixteen-bit field, It is
used as a record number to associate an indexed field
with the corresponding Field Value Table and to associate
link items with the appropriate record of the Linkage
"Table.

2-6

Item List segments fuilow the data segment conventions (see Paragraph 2. 10)

except for the following special requirements.

(1) No record may be split across two segments.

(2) An Item Goal Code (IGC), required for the calculation
of ICC 's for the records of the segment, mu-t be
included within the segment.

(3) If Item List segments are to be prc'wessea &s data, a
method of identifying the segmet- as data (e. g.,
1. 2.2.11) needs to be provided. The spt •al identi-
fication of Item list segments is a prefix of 1.0.2
followed by the ICC of the Arst Item List entry within
the segment (see Paragraph 2.11.1).

2.4 TERM ITST

When items are defined, the information provided in the item definition is split

between the Item List and the Term List. Term names and unit codes (for numeric fields)

are retained in the Term List so they will not encv-v-w'b tL. Itern List which deals with

logical names ratther than term names.

The Term List is a file ordered by the logical name, the ICC, of its items.

Its records are always paired with Item List records so that the system can retrieve the

term name from the logical name whenever this is necessary for communication with a

system user.- The forip.-t of the Term List is as follows:

TERM LIST, F
TERM NAME, A, V
UNITS, B, 6
RESERVED, 1, 18

Term List segments are completely standard d&*+ segments. They are identi-

fied by the prefix 1 .2. 3 followed by the Item List record number and a . 1 for Term Name

or .2 for Units.

2.5 TERM ENCODING TABLE

The Term Encoding Table contains the term names from the Term List arranged

in alphabetic order by terir name and equated to the logical names (ICC) assigned to each

term.

2-7

The Term Encoding Table (TET) is an ordered f!le maintained in ascending

order by term name. Its format is as follows:

TERM ENCODING TABLE, F, ORDERED (1)
7ERM NAME, A, V
ICC FILE, F

ICC, H, V

A file of ICC's is equated to each term name because the same term name may be used

more than once in the data pool. Sometimes names .Al be intentionally repeated in several

different structures becaase the corresponding items have the same meaning. At other

times. term names are homographs (words spelled the same but with different meanings)

and the uiser will have to use qualifiers (term names for parent items) to distinguish

between them.

TET segments follow the data segment conventions except for the following

special requirements.

(1) No record of the TET file may be splft across two
segments.

(2) If TET segments are to be processed as data, the
record identifiers are 1.2. 1. R. When a service
routine accesses the TET segments, it uses as an
identifier a prefix of 1. 0. 1 suffixed by the term
name. This means that segments of the TET have
dual identifiers in the Segment Name List (see
Paragraph 2.11.1)

2.6 INDEX TABLES

Any field in the data base can be indexed. An indexed field is one whose field

values are important enough to justify storing them in the directory in a table called a

Field Valuae Table (FVT). As shown in Figure 2-2, each value in an FVT points to an

R -Value Index Table (RVIT) which contains the record numbers of records containing

the field with the given field value.

2-8

(1 ITEM LIST FVT RVIT

Aa Indexed Field Value 1 Record 6
Value 2 Record 8

Record 3
Record 10

Figure 2-2. An Indexed Field in the Data Base

Since there is an FVT and a set of RVIT's for each indexed field, these elements

are subsumed by the records of two parallel files, the Fields File and the Shadow of Fields

File. The structure of these files is as follows:

FIELDS FILE, F
INDEX CODE, B, 2
USAGE, I, 18
RESERVED, I, 18
FVT FILE, F, ORDERED (1)

FIELD VALUE, B, V
END OF RANGE, B, V
VALUE/RANGE OCCURRENCES 1, 18
USAGE OF VALUE/RANGE, I, 18
FIRST R-VALUE, H, V

SHADOW OF FIELDM FILE, F
SHADOW OF FVT FILE, F

RVIT FILE, F, ORDERED (1)
R-VALUE, H, V

The Fields File has a record for each indexed field in the data base. As fields are in-

dexed (see Index job, Paragraph 6.3. 1), the next available record number of the Fields

File is assigned and placed in the Item List entry for the field. This record number

'A,

j 2-9

serves as a link from the Item List to the Fields File. The record itself contains

the following information:

(1) Idex Code. This is a two-bit field with same coding
as the corresponding field in the Item List; i. e.:

01 - indexed by LIST

10 - indexed by RANGE

11 - indexed by ALL

(2) Usage. This is an eighteen-bit field, which contains a
count of the number of times the index table is used.

(3) Reserved. This is an eighteen-bit field which is reserved
for future use.

(4) FVT File. This is an ordered file containing records
for each list or range of values provided by the um ir
as input to the Index job or for each different field
value within the data if indexed by all values.

(5) The Shadow of Fields File is a parallel file, in that,
for each record of the .Fields File, there is an equiva-
lent record in the Shadow of Fields File.

(6) The RVIT File is an ordered file containlng records for
each R-Value which points to a specific field position
in the data base. That field position has a value cor-
responding to the value In the associated FVT record.

The segments of the index tables follow standard data segment conventions.

The Fields File records are identified by 1. 2. 5. R, where the value for R is obtained

from the record number stored in the Item List. The equivalent Shadow of Fields File

record is identified by 1.2.6. R, with the same value for R. An RVIT File is idertified

by 1.2. 6. R. 1. R. 1, with the value for the first R coming from the Itein List entry and

the value for the second R coming from the record number of the FVT File.

2.7 LINKAGE TABLE

Link items are never defined by the user when he presents item definitions

to the system for the purpose of defining his structure. The Define-Item job, the Item

Image Translation subroutine, and the Fix Service routine do not recognize the link as

an item type. The reason for this restriction is that item definition is by nature a

ci'
2-10'

sequential process, and a source or target link item in one structune is meaningless until

the partner link has been defined in another structure. To avoid problems, both ends of

a link are defined in parallel through the Link job (see Paragraph 6.4. 1). When the Link

job is executed, link items are inserted into the tem List, and they remain there until a

Delete-Link job is executed.

The Linkage Table is a file which containR a record for each link item .n the

Item List. Its structure is as follows-

LINKAGE TABLE, F
S/T CODE, B, 1
RELATED ICC, H, V
USAGE, I, 18

Each record in the Linkage Titble contains the following fields:

(1) SiL Code. This is a one-bit binary field which is 0
if the record corresponds to a source linX., or 11 if the
record corresponds to a target link.

(2) Related ICC. This is a variable length field containing
the ICC of the partner link.

(3) RUage This it an eighteen-bit integer field which
contains a count of the number of times the link is
traversed.

When the Link job is executed, the next two available record numbers of the

Linkage Table file are assigned. These record numbers go into the new Item List entries

which are inserted into the Item List. The ICC of the partner link is placed in the Linkage

Table records.

The segments of the Linkage Table follow standard data segment conventions.

Records are identified by 1.2.4. R, where the value for R Is obtained from the record

number stored in the Item List.

2.8 USER ACCESSMODIFICATION RIGHTS TABLES

Security Restriction Level (SRI, codes for data are recorded in the Item List.

If data is restricted, a system user must have a clearance level greater than the security

2 -11

t

restriction level of the data, or he must have specific access or modification rights to

the item before he may read or write th!a data.

The directory tables containing user access and modification rights a.*e pro-

duced when tL6 appropriate maintenance jobs are executed (see Paragraph 6. 5. 1). The

structure of the User List file, Access Rights file, and Modification Rights file is as

follows:

USER LIST, F, ORDERED (1)
USER NAME, A, V
USER CLASS, A, V
PRIORITY, 0, Z
CLEA?"4NCE LEVEL -ACCESS, 0, 1
CLEARANCE LEVEL- MODIFICATION, 0, 1

ACCESS RIGHrS, F, ORDERED (1)
USER CLASS, A, V
OPEN CLASS LIST, F

ICC, H, V
FIELD CONDITION LIST, F

ICC, H, V
ICC, H, V
FIELDVALUE, B, V

MODIFICATION RIGHTS, F, ORDERED (1)
USER CLASS, A, y
OPEN C LASS LIST, F

ICC, H, V
FIELD CONDITION IIST, F

ICC, H, V
ICC, H, V
FIELD VALUE, B, V

Records are added fo the User List file each time the Add-User job is executed.

The information for the record is input to the Add-User job.

Users are assigned a User Class code so that in the Access Rights and Modi-

fication Rights tables all users with identical rights can be combined. These tables list

data items which may be read or wrTitten even though their SRL codes are equal to or

higher than the user's clearance level. These tables are consulted only after failure of

the initial security check of user clearance level against the security restriction level of

the data. The information for these tables is input to the Add-Access-Rights or Add-

2-12

I

C Modification-Rights jobs. There are two kinds of access or modification rights:

(1 Open Class List. This is a file giving the logical
names of items which a class of users may read or
write, even though the initial security check fails.

(2) Field Condition List. This is a file giving the logical
names of items which a class of users may read or
write, even though the initial security check fails,
if a field within the item has a specified value.

These tables follow standard data segment format rules. The identifiers are:

(1) User Lis, 1.2.12

(2) Access Rights 1.2.13

(3) Modification Rights 1.2.14

A specific record can be retrieved quickly through binary search techniques

becuse these files are maintained in order by User Name or User Class.

2.9 PROGRAM AND JOB DESCRIPTION LIBRARY

The urograms which make up the constituent elements of DM-1 are not stored

in the data pool. The operating system stores the DM-1 system coding and loads it Into

memory when called upon to do so. DM-1 stores descriptions of thesc programs in a

set of directory tables collectively called the library.

After a program is written and filed wvith the operating system, a Progratn

Entry job (see Paragraph 5.2) is executed to identify and describe the prcgrai. • .•. -1.

At this time, th" program name and a description of the program's inputs 4nd itpts.

are filed in the program description library. An entry is also made for the program in

the job description library.

Programs are the building blocks of jobs. The Job Description job (see

Paragraph 5.3) may be used to name and describe a job. This places the job name and

a list of t*e programs which constitute the job into the job description library.

(

2-13

A

For convenience, the program description library and tne joh description 1'

are each subdivided into two separate directory tables. The four directory tah,es --,hi:.

make up the library are identified as:

(1) Program Statement (program names)

(2) Program Description List

(3) Job Statement (jcb names)

(4) Job Description List

The elements of the program description library have the following 5,rr:rv

PROGRAM STATEMENT, 5, S
PROGRAM NULL LIST, F

PROGRAM NULL R-NO, I, 18
PROGRAM LAST R-NO.,), i8
PROGRAM NAME LIST,- F, ORDERED (1)

PROGRAM NAME, A, V
PROGRAM R-NO., P, 18

PROGRAM DESCRIPTION LIST, F
PROGRAM BINDING LIS3T, F

PROGRAM ITEM LIST, F
RESERVED, B, 10
SRL- ACCESS, 0, 1
SHL- MODIFICATION, 0, 1
RESERVED, B, 2
ITEM TYPE, B, 6
OPTION CODE, B, 1
ITEM SIZE, i, 11

PROGRAM TERM LIST, F
TERM NAME, A, V
UINITS, B, G
RESERVED, I, 18

2-14

'The elemcite af the Job description library have the following atructure:

JOB STATEMENT, S,aJOB NULL L'ST, F

JOB NULL R-NO., i, 18
JOB LAST R-NO., I, 18
JOB NAME LIST, F, ORDERED (1)

JOB ?AME, AP V
JOBR-NO., I, 18

JOB DESCRIPTION LIST, F
JOB ID, A, V
SOB ITEM LIST, F

CLASS, i, 3
J/O LIST F

TYPE B, 3
I/O NAME, A, V
PIL R-VAL, H, V

STATIC TASK LIST, F
TYPE B, 3
TASK ID, I, 12
NO. FLOATS, 1, 3
INPUT LIST, F

FORMAL NAME, A, V
CLASS, I, V
I/O R-N ,, I, 15

OUTPUT LIST, F
FORMAL NAME, A, V
CLASS, I, 3
I,'0 R-NO., I, 15
FORMAL NAME, A, V
CLASS, i, 3
I/OR-NO., 1, 15

JOB COMPONENT LIST, F
COMPONENT NAME, A, V
COMPONENT R-NO., 1, 18
COMPONENT i/O lIST, F

TYPE, B, 3
I/O NAME, A, V
CLASS, i, 3
I/0 R-NO., I, 15

USAGE TIST, F
JOB NAME, A, V

(
2 -15

Segment's of all four of these directory tables follow standard data segment

format rules. The Identifiers are:

(1) Program Statement - 1.2.8

(2) Program Name List - 1. 2.8. 3

(3) Program Description List - 1.2.9

(4) Job Statement - .2.10

(5) Job Namne List - 1. 2. 10.3;

(6) Job Description List - 1. 2.11

2.10 DATA SEISMENTS

A segroont is the unit of data transfe., between DM-1 and the operating system.

The segment is 9216 bits long (512 x 18). The bits are numbered from 1 to 921.6. Each

segment consists of four parts: the segment head, the segment index, tilte body, and the

slack.

2.10.1 Segment Head

The elemnenth of the segment head are:

(1) Segment Name 54 Dits

(29) Pointer to Body. 15 bits

(The bit number of the last bit
occupied by index, expressed in
binary.)

(3) Pointer to Slack........... 15 bits

(The bit number of the last bit
occupied by body, expressed in
binary.)

(4) Reserved for future use. ... 12 bitsi

TOTAL 96 bits

k1

m 4

The Segment Name is a unique symbolic name user by DM-1 in data transfer

calls to the operating system. DM-1 expects the operating system to control la~ v

and absolute mass-storage addressing. The Segment Name List (see Paragrap,, 2. 11)

cross-references the DM-1 segment identifiers to Segment Names.

2.10.2 Segment Index

The final step in retrieving a data item is taken with the aid of the segment

index. Information in the directories serves to identify the particular segment containing

the desired data item. The Item List provides a pattern for "stepping down" a data seg-

ment to the desired item, but there are several variables which cannot be stored in the

Item List because they pertain to a unique position (IPC) rather than to a class of items

(ICC). Information about these variables is stored in the segment index. It contains the

following directory-like information:

(1) File-Continuation Counters. For files that began in a
previous segment, theae counters specify the number
of records or partial records that exist in this segment.
There is one counter for the deepest level of the file
and one for each lhgher level up to that level where
the record number does not change. Stepping down
through a file of data requires looping through the item
List each time a record begins. The file-continuation
counters control the looping back in the Item List.

(2) File-Size Entries. These are counters which specify
the number of records or partial records that exist in
this segment for files that begin in the segment. Like
the file continuation counters, the file-size counters
control the looping back in the Item List when stepping
through the data segment.

(3) Optional Item Entries. The Item List (see Para-
graph 2. 3) contains a code which may indicate that
an item is optional. This means that at any single
position JIPC), the item may be missing. For
optional items, the segment index contains an entry
which will be zero if the item is missing. If the
item is present, the entry will contain the item size.

2-17

(4) Variable Length Fields. An item size of zero in the Item
List means that the field is of variable length. For vari-
able length fields, there is an entry in the segment index
which gives the actual length at this position. Field size,
whether given in Item List or segment index, is stored
as the number of bits or bytes in the field. It must be
multiplied by 3 , 4, etc., based on the item type of the
field.

The segment index is of variable length, depending on the number of entries

required. All entries are recorded in B-S format.

2.10. ? Segment Body

The Segment Body contains the data as a stream of bits with no field separators.

The Item List and segment index provide the information necessary to identify the fields

within this stream of bits.

All fixed-length required fields have a most significant bit (the null bit), in

addition to the size as given in the Item List. If this leading bit is zero, the field is pre-

sent in the following bits. If this leading bit is one, the field is not present, and the follow-

ing bits represent the space which has been reserved for the field.

In placing fields in the body of a segment, a field will not be split across two

segments. If the last field will not fit, it will be placed in the next segment and the wasted

space will be designated as Slack. This limitation on the length of a field to approximately

9,000 bits is not considered to be serious.

2.10.4 Partition between Segments

Since some items appearing in the Item List never consume any space in the

data segment (e.g., record, null node), the identification of the second segment becomes

a problem when the partition occurs at one of these nonspace-consuming items. For

convenience, oegments are identified by the IPC of the first space-consuming item in

either the index or the body of the segroeit.

2.11 SEGMENT NAME LIST

The Segment Name List kSNL) relates the logical segment identifiers of DM-1

to the segment names known to the operating system. The SNL is an ordered file which

2-18

I

Sis ust;J 1 Nai,) , .utle of the Service Package (see Section II) to convert

segmt: '• ident c*r Lo •pr. names. The format of the SNL is as follows:

ýi . "'_1 k ii, ;• ORDERED (1)
T. --. TDLNTIFIER, H, V

SEGMi 1.7' ., A, 9
FLAC, , 1
ACCESqz USAGZC , I, 18
ED!_T1OIITNUM iG., I, 18
CFTRRENT EDITION FLAG, B, 1
BUSY M!T, B, 1

All segments of the data pool are identified by the IPC of the first data item

contained in the segment. Since-41i SIL is ordered by segment identifieis, a Rearch on

the SNL will provide the segment name for the segment which contains the desiced item.

There is no need to access any data segment except the one containing the desired item.

There are two directory tables which are identified in the SNL by special

identifiers as well as by IPC 's. These are:

(1) Term Encoding Table. The special identifier used for
TET segments consists of a prefix of 1. 0. 1 followed by
the term name of the first record within the segment.

(2) Item List. The special identifier used afr Item List
segments consists of a prefix of 1. 0. 2 followed by
the ICC of the first record within the segment.

These special segment identifiers are used by routines of the Service Package which treat

these directory elements as special tables rather than as standard data segments.

Segment-Name List segments follow standard data se.',ent format rules. The

file can be processed as data through the game input-output rt 4-V, es which service the

rest of the data pool, using a prefix of 1. 2.7. The only res2-,:•tion on thet.e segments

is that no record will be split across two segments. The Term Encoding Table and Item

List are like the SNL in this respect.

2-19 I!

2.12 DIRECTORY FORMAT

The detailed structure of the data pool, before the defi,,'tion of anv application-

oriented items, is shown in Table 2-3. This table shows the entire data pool as the
Ptatement DATA POOL, which subsumes four items. These are the statements DATA

BASE, DIRECTORY, WORK AREA, and SCRATCH AREA. The substructure for the

data base, work area, and scratch area are defined as the data pool evolves through

system use. The substructure for the directory is fixed by the DM-1 system. All

elements of the directory are shown in Table 2-3.

1 2-20

I

I

TABLE 2-3. STRUCTURE OF THE DATA POOL

1 DATA POOL, S, 4

1.1 DATA BASE, S,

1.2 DIRECTORY, S, 14

1.2.1 TERM ENCODING TABLE, F, ORDERED (1)

1.2.1. R. 1 TERM NAME, A, V

1.2. 1. R.2 ICC FILE, F

1.2. 1. R.2. R. 1 ICC, , V

1.2.2 ITEM LIST, F

1. 2.2. R. I RESERVED, B, 10

1.2.2. R. 2 SRL-ACCESS, 0, 1

1. 2.2. R. 3 SRL-MODIFICATION, 0, 1

1.2.2. R.4 INDEX CODE, B, 2

1. 2.2. R. 5 ITEM TYPE, B, 6

1. 2.2. R.6 OPTION CODE, B, 1

1.2.2. R. 7 ITEM SIZE, I, 11

1. 2.2. R. 8 NO DATA FLAG, B, 2

1.2.2. R. 9 RECORD NUMBER, I, 16

1.2.3 TERM LIST, F

1.2.3. R. 1 TERM NAME, A, V

1.2.3. R.2 UNITS, B. 6

1. 2. 3. R. 3 RESERVED, 1, 18

1.2.4 LINiKAGE TABLE, F

1,2.4. R.1 S/T CODE, B, 1

1.2.4.R.2 RELATED ICC, H, V

1. 2.4. R.3 USAGE, I, 18

F 2-21

TABLE 2-3. STRUCTURE OF THE DATA POOL (Continued)

DATA POOL, S, 4 (continued)

i. 2 DIRECTO)RY, S, 14 (continued)

1.2.5 FIELDS iILE, F
1.2 5. R.1 INDEX CODE, B, 2

1. 2. 5. R. 2 USAGE, I, 18
1. 2. 5, P% I RESERVED, 1, 18

I.'.5 . FVT, F, ORDERED (1)

1.2.5. R.4, .1 FIELD VALUE, B, V

.5.R. I END OF RANGE, B. V

.2.2 ,A.R.3 OCCbiitPENCES, I, 18

.. 5.1 A..4 VALUE/RANCE USAGE, I, 18

2 5 1. It. 5 FIRST R-VALUE, H. V

,6 SHADOW OF FIELDS FILE, F

S2,• 6lit.: SHADOW OFFVT, F
. .. 1. % , RVIT, F, ORDERED (1)

-? .R.1 R-VALUE, H, V

SEGMENT NAME LIST, F, ORDERED (1)

SEGMENT TDENTIFIER, H, V

SEGMENT NAME, A, 9

2 •FLAG, B, 1

. 2. . ACCESS Uz'k.VE. 1, 18

7 ,EDITION NUMBiER, I, 18

S.... 7. iCURRENT EI1TION FLAG, B, 1

""-BUSY BIT, B, I

C
2-22

___:-:• ,.. .

TABLE 2-3. STRUCTURE OF THE DATA POOL (Continued)

1j DATA POOL, S, 4 (continued)

1,2 DIRECTORY, S, 14 (continued)

1.2.8 PROGRAM STATEMENT, S, 3

1.2.8.1 PROGRAM NULL LIST, F
1.2.8.1.R. 1 R-NUMBER, I, 18

1.2.8.2 PROGRAM LAST R-NUMBER, I, 18

1.2.8.3 PROGRAM NAME LIST, F, ORDERED (1)

1. 2.8.3. R. 1 PROGRAM NAME, A, V

1. 2. 8. 3. R. 2 PROGRAM H-NUMBER, I, 18

1.2.9 PROGRAM DESCRIPTION LIST, F

1.2.9. R. 1 PROGRAM BINDING LIST, F

1. 2.9. R. 1. R. 1 PROGRAM ITEM LIST. F

1.2.9. R. 1. R. 2 RESERVED, B, 10

1. 2.9. R. 1. R. 3 SRL-ACCESS, 0, 1

1.2.9. R. 1. R. 4 SRL-MODIFICATIOI, 0, 1

1.2.9. R,1. R.5 RESERVED, B, 2

1.2.9. R, 1. R.6 ITEM TYPE, B, 6

1.2.9. R.1.R.7 OPTION CODE, B, 1

1.2.9. R.1.R.8 ITEMSIZE, 1. 11

1.2.9. R. 2 PROGRAM TERM LIST, F

1.2.9. R.2. R. I TERM NAME, A. V

1.2.9. R. 2 UNITS, B, 6

1. 29. R 2. . 3RESERVED, 1. 18

2-23

K?

TABLE 2-3. STRUCTURE OF THE DATA POOL (Continued)

I DATA POOL, S, 4 (continued)

1.2 DIRECTORY, S, 14 (continued)

1.2.10 JOB STATEMENT, S, 3

1.2.10.1 JOB NULL LIST, F

1.2. 10. 1. R. 1 R-NUMBER, 1, 18

1.2.19.2 JOB LAST R-NUMBER, I, 18

1. 2.14.3 JOB NAME LIST, F, ORDERED (1)

1.2.10.3. R.I JOB NAME, A, V

1.2. 10. 3. R 12 JOB R-NUMBER, 1, 18

1.2.11 JOB DESCRIPTION LIST, F

1.2. 11. R.I JOB ID, A, V

1.2.11. R. 2 JOB ITEM LIST, F

1.2. 11. R. 2.R.1 CLASS, i, 3

1.2.11.R. 2.R.2 I/O LIST, F

1.2.11. R. 2.R.2.R., TYPE, b, 3

1.2.11. R.2. R.2.R. 2 1/O NAME, A, V

1.2.11. R. 2.R.2.R.3 PIL R-VALUE, H, V

1. 2. 11. R. 2. R. 3 STATIC TASK LIST, F

1.2. 11. R. 2.R. 3. R. 1 TYPE, B, 3

1.2. 11. R. 2. R.3.R.2 TASK ID, I, 12

1. 2. 11. H.2.1R.3.R. 3 NO r*UA'rv, I,

1.2.11.R.2.R.3. R.4 INPUT LIST, F

1.2. 11.R.2.R.3.1R.4.R.1 , jRMAL NAME, A, V

1.2.11.R.2. R. 3. R.4. R.2 CLASS, I, 3

1.2.11. .R. 2.R.3. R.4.R.3 I/O H-NO., 1, 15

1.2. 11. R. 2. R. 2. R.5 OUTPUT LIST, F

1.2.11.I. 2. R. 3. R. 5. R.I FORMAL NAME, A, V

1.2. 11. R. 2. q.3. R. 5. .2 CLASS, 1, 3

1,2. 11. R.2. R,3. R. 5. R. 3 1/0 R-NO). 1. 15

1. 2. ' 1. R. 2. R. 4 JOB COMPONENT LUST, F

i.2 11. R. 2.R.4. R. I COMPONENT NAME, A, V

1,2. 11.R.2. R.4.R.2 COMPONENT R-NO., 1, 18

1.2.11. R2.R.4. H.3 COMPONENT I/O LIST, F

1.2. 11. R. 2.R.4.R. 3. R.I TYPE, B, 3

1.2.11.1R.2.R.4.R. 3. R.2 I/O NAWE, A, V

1.2.11. R.2.H.4.R.3.HR.3 CLASS, 1, 3

1.2. 11. R.2. R.4.R.3. R.4 I/O R1-NO., 1, 15

1.2.11.R.2. R. 5 USAGE LIST, F

1.2. 11. R.2. R.5.. R.I JOB NAME, A, V

2-24

TABLE 2-3. STRUCTURE OF THE DATA POOL (Continued)

1 DATA POOL, S, 4 (continued)

1.2 DIRECTORY, S, 14 (continued)

1.2.12 USER LIST, F, ORDERED (1)

1.2.12.R. 1 USER NAME, A, V

1.2.12.R.2 USER CLASS, A, V

1. 2.12. R. 3 PRIORITY, 0, 1

1.2.12.R.4 CLEARANCE LEVEL-ACCESS, 0, 1

1.2.12.R. 5 CLEARANCE LEVEL-MeDIFICATION, 0, 1

1.2.13 ACCESS RIGHTS, F, ORDERED (1)

1.2.13.R.1 USER CLASS, A, V

1,2.13.R.2 OP " CLASS LIST, F

1.2.13.R.2. R. 1 ICC, H, V

1.2.13. R.3 FIELD CONDITION LIST, F

1.2.13. R.3. R. 1 ICC, H, V

1.2.13. R. 3. R. 2 FIELDICC, H, V

1.2.13.R 3. R.2 FIELD VALUE, B, V

1.2.14 MODIFICATION RIGHTS, F, ORDERED (

1.2.14. R. 1 USER CLASS, A, V

1.2.14. R.2 OPEN CLASS LIST, F

1.2.14.R.2. h. 1 ICC, H, V

1.2.14.R. 3 FIELD CONDITION LIST, F

1.2.14.R.3. R.1 ICC, H, V

1.2.14.R.3. R. 2 ! CC, H, V

1.2.14.R.3. R. 3 FIELD VALUE, B, V

1.3 WORK AREA, S, 0
1.4 SCRATCH AREA, S, 0

C

S~2-25

SECTION 111. OMA-I SERVICE PACKAGE

T~eDM- 1 Service Package encompasses all of the routines involved in

storage and retrieval, Loth for data and for system directories. In Volume I ot thig

report, the services are treated from the user's viewpoint. Volume I , dresse's such

questions as: W~hich service or set of services must a user call on to accomplish a

partcimiar information processing activity? What does each service do for the userl

What parameters must the user supply to the service? Volumea I., then, is directed

towards those who wilt use the Service Pa~ckage, while Volume 11, in which the ser-

vkce? are analyzed in much greater detail, is aimed at those who will impltment the

Service Package.

The first characteristic which can b.- observed in the DM-l system is that

It consists of aj large' n~umber of relatively smiall routines, This fact reflects a basic

'i

design decision. The user services, such as Read aind Write, ~.cwdd have been
designed as individual, monolithic program~s. That. approach was rejectod as being

wasteful and inflexible. Instead, a modular design was ýkzelected. Consequently, the

DM-1 system contzins many routines, each of which performs ak single function,

The user services consist of combirtations of the more O-m~entarv services. All of

che ri~ervlee can be divided into six categor-2es.. which ;.re treated inl the following I
paragraphs. These categories are:

'3,-1

(1) Bookkeeping

(2) Seginentaffon

(3) Translation

(4) Maintenance

(5) Basic User Operatio.,i

(6) Compound User Operations

3, 1 BOOKKEEPING

Some fundamental aspects of the DM-:i :-.-em imply an important bookkeep-

ing activity while the data pool is bsing used, The design is characterized by the

following facts:

(1) -'he item identifiers are not stored explicitly but are
simply implied in certain counters.

('• The structure definitions, which allow cons.d'4rable
varlaior- in the data, are stored separatly f ro m the
data, and

(3) The data is stored as a continuous, unformatted stream
of bits.

Volume I has explained the reaE -n for this design; the following paragraphs

desoribe the record keeping which the design implies.

3.1.1 Level Pushdown List

The system k(eps track of the identifitation of the item currently being

processeu b- means of a device c.lled the Level Pushdown Liot (LPL). Refer to

Table 3-- 1.

,1 ii first column of the list contains the ltern Position Code (IPC) of the

currenlt item. Lach row of t',s column consists of the aigit value of the IPC at that

level. The le iel gets larger to re,.. esent - deeper position in the data hierarchy.

The letter 1. wiLhout qualification, , lpr.-sents the level of the current item.

The second column of the LPL contains the subsumed item cownt (SIC).

On e:ach row, this k.ount serves as a bound which limits the IPC digit on that level.

As a rule, ts 2 SiC on level I contains the total number 4f items subsumed by the

parent o0 1M' current item, An exception occurs !" tne current item is a record, which

requlj es -p-,cla1i proce.,sing.

3-2

(TAB LE 3-I 1, ORMAT OF LE VE L PUSHDOWN LIST

Level IPC sic R

1 TPC (1) sic (1) 0/1 J (1)

2 rPC (2) SK, (2) 0/1 J (2)

I I I I,

Lee IP SIC (1R___ J____

____ P (c__1) sic (1) 0/1 J (1)

In the third column, _4 is a aimple flag indicating whether the TPC digit at

a given level is a record number.

In the fourth column, J is an. index to a nonterralnal item in the Item List

Table. At level 1,1 is an index to the parent of the current item.

The Purchasing Item, defined in TabJe 3-2, provides the basis for the two

exam~ples of the Level Pushdown List given in Tables 3-3 and 3-4. The LPL in Table 3-3

assumes that the system is currently processing the field PRICE in the eighth record of

the PO Item File.

The first column of Table 3-3 contains the IPO for PRICE ()1. 8.3). The

bottom row of the list reflects the f,*t that PRICE is the third subltem under a parentj

which directly subsumes four items. The R-bi1. is zero because PRICE is not a re-

cord. The J-value U points to the Item List Table where more information is

available on the parent of the PRICE field.

The 14 on level 3 of the SIC column in Table 3-3 is an example of the ex-

ception previously mentioned. The 14 does not represent the total number of records

in the file as the rule for SIC wolu d suggesi. Rather 14 is the number of records from

the beginning of the file to the end of the data segment currently being processed.I

The LPL In Table 3-4 assumes that. the rent item is th field YEAR

In the statement DUE DATE of the seventh record of the ORDE. File. YEAR is a
Ath level It, with an IPC of 1.2.7.2. 1. The bottom row shows 'hat YEARI is the

which diretly subsums four ites'. 'rhe -b ý szr1eas RIEi o e

TABLE 3-2. DEFINITION OF PURCHASING ITEM

, ICC ITEM DEFINITION

I PURCHASING, S, 3

2 1.1 PO ITEM, F

3 1. 1R (PO ITEM, R, 4)

4 l. 1.R. 1 ITEM NO., T, V

5 1.1. R. 2 VENiDOR NO., 1, 4

6 1. 1.R.3 PRICE, 1, 12

7 1. 1. R. 4 rDESCRIPUION, A, V

8 1.2 ORDER, F

9 1.2. R (ORDER, R, 6)

10 1.2. Ro1 PONO., 1, 6

11 1. 2. R.2 DUE DATE, S, 3

12 1.2. R.2.1 YEAR, D, 2

13 1.2.R.2.2 MONTH, D, 2

14 1.2,R.2.3 DAY, D, 2

15 1.2. R. 3 REQUESTOR, A, V

16 1.2. R. 4 VENDOR NO., I, S

17 1.2.R.5 VALUE, E, V

18 1.2. R. 6 ITEM DETAILS, F

19 :1.2-R. 6. R (ITEM DETAILS, R, 3)

20 1.2.R.6. R. i ITEM NO., I, V,

21 1.2. R. 6. R. 2 QUANTITY, I, S

22 1.2.R.6.R,3 COST, E, V

23 1.3 VENDOR, F

24 1.3.R (VENDOR, R, 2)

2 2L 1.3. R. 1 VENDOR NO., I, 4

26 1. 3. R. 2 VENDOR NAME, A, V

* Optional item

3-4

,'v

TABLE 3-3. LPL FOR PRICE FIELD

Level IPC SIC R J

1 1 - 0 -

2 1 3 0 1

3 8 14 1 2

4 3 4 0 3

TABLE 3-4. LPL FOR YEAR FIELD

Level IPC SIC R J
1 1 - 0 -

2 2 3 0 1

3 7 11 1 8

4 2 6 0 9

5 1 3 0 11

first in a group of three items. The zero in the R column simply means that the item

is not a record. The 11 in the J-column indicates that the parent (DUE DATE) oi the

current item is defined in entry 11 of the Item List Table.

3,1.2 Access Parameter Table

For each input or output data stream which the user is processing, the

DM-1 system must maintain a Level Pushdown List as well as other control infor-

mation which is described in the remainder of this section. The user supplies an

area of memory to hold this information, The total group of lists and control

pointers relating to a particular input or output stream is called the Access Parameter

Table (APT). The address of the APT is used as an input parameter for user ser-

vices (e. g., Read and Write) which need to know which data stream to process.

3.1.3 Item List Table

The second list which the service routines employ to interpret the data

streams is the Item List. For the sake of efficiency, the DM- I system extracts
from the entire Item List that informs' ion which is frequently required for the pro-

ceesing of an ol ned item and its subitems. The extracted information makes up the

(

3-5

rt

Item List Table (ILT) that is set up during the OPEN operation, which is part of both

the storage and retrieval services. Table 3-5 shows tAe Item List Table that cor-

responds to a portion of the Purchasing Item which is defined in Table 3-3.

TABLE 3-5. ITEM LIST TABLE

Item Item Option Index No Data
Type Size Code Code Flag

1 3 3 0 0 0

2 F V 0 0 0

3 .R 4 0 0 0

4 I V 0 0 0

5 I 4 0 0 0

Price 6 I 12 0 0 0

- A V 1 0 0

8 F V 0 0 0

9 R 6 0 0 0

10 I 6 0 0 0

11 S 3 0 0 0

Year 12 D 2 0 0 0

Table 3-5 lists Item Type, Item Size, Option Cxie, Index Code, and No

Data Flag. A detailed explanation of these fields is presented in Section IV of Volume

I. The letter J is the Inde:, which the system keeps set at the current item. The fields

which were used in the examples for the Level Pushdown List are shown in this ex-

ample. PRICE (shown at j 6) is a 1:-bit Integer, and YEAR (at j = 12) is a 2-digit

decimal value. Neither field is optional or indexed. The No Data Flag is clear be-

cause both items are actually x epresented In the data pool (either by data or by null

indicators).

3-6

3.1.4 Segmen. I-i J"x

The third .ou:.e of information which helps to dufine the items in a data

tc ,, Segment index. Although this index is carried in data segments, it is

a 1op,,"l extension of the Item List. The size of a fixed length field can be contained

irn t' - Item List because it is the same for e-,,ry occt~rrence of that field. Obviously

the tame cannot be said for the size of a variable length field. Consequently, a

different rnech.inism must bp used to define the size of variable length fields; the

nrwchanism is tht, Segment Index. Each time a variable length field occurs, its size

is defined in tie Segment Index. In a .ýImilar manner, the index contains record

counters for ,fles. These counters, the File Continuation C3unter and the File Size

Entries, are dserlbEd In greater '2+ail in Paragraph 2. 10. The final area in which

the Segment index sipplements the Item List is the area of optional items. The Item

List declares whether an item is optional or required. But, an optional item may be

present in some records ind absent in other records. Therefore, an indicator is

needed for each occurrence of the item. These indicators are contained in the Segment

Index.

3.1.5 Missing Data Indicators

To understand the interpretation of the data streams, it is necessary to

know the various methods of indicating the absence of dat.. The following list

summarizes these indlcatars:

(1) Null Node and No-Data Flaj. The Null Node and the
No-Data Flag are devices used by the Maintenance
Jobs under the direction of job requestors. Although
they appear in the Item List, these indicators do not
relate to any data existing in the data pool. There-
fore, the servtce routines ignore them and immediately
step to the next item.

(2) Option Code. The option code in the Item List plus an
indicator in the Segment index represent an optional
item which is absent. If a nonterminal item is
absent, all of Its subitems are assumed to be missing.

(3) MissingParent. Even required, i.e., nonoptional,
items have no data in the data pool if a parent item is
missing.

(

3-7

(4) Files with Zero Records. An empty file is represented
by a file size of zero in the File Size Entry of the
Segment Index.

(5) F.elds with Zero Size. A variable length field may
have a size of zero.

(6) NMLlDIt. If there is no data for a fixed length field,
the null bit is set to one and a null value (corresponding
to the item type) is stored in the space allotted for that
field.

3.1.6 Bookkeeping Service Routines, The individual service routines in the

Bookkeeping category are defined in the following paragraphs.

(1) Get Next IL Entry. This routine steps the pointers of
the Item List segment to the next entry. If there
are no more entries in the current segment, this
routine calls for the next segment and initializes
the pointers to the first entry. Other services used
are: Name Segment and Fetch Segment.

(2) Locate IL Entry. This routine skips over unwanted
entries in an Item List Segment and sets the pointers
at an entry which corresponds to a given ICC (Item
Class Code), Other services used are: Stem and Skip
Subitems.

(3) Skip Subitems. This routine usec the item type
codes in the Item List segment to skip over "T"
items and all of their subsumed items, including
those subsumed directly and indirectly. Other
service used: Get Next IL Entry.

(4) Retrieve IL Entry. This routine re. sieves tke Item
List Segment contairning the entry fi, a gwvcn ICC and
moves the pointers to that entry. -,Ther services
used: Get Segment and Locatte IL i:nti'v.

(5) Build .IL Table. This routine extracts information
from Item List segments and produces the Item
List Table. The table, which was described earlier
in Paragraph 3. 1.3, begins with the entry corres-
ponding to the stem of the data segment containing
the desired Item. The table includes all items sub-
sumed directly or indirectly by the desired item.
Other services used: Stem, Retrieve IL Entry,
anid Get Next IL Entry.

(6) Stein. This routine compares two identifiers, digit
by digit, and produces a number (X) which tells how
many consecutive digits match. '1his number
identifies the level of the common parent of the two
items.

3-8

(7) Define Segments. This roucine steps the Item List
Table from a parent item to the first item in a
segment (Segment Index Left). The parent item
may be the opened item or the stem of the segment
of the opened item. Define Segment also initializes
the pointers of the data segment. Other service
uscd: Step Item.

(8) Step Item. This routine steps all of the control
pointers and data pointers to the next item and
retrieves the next data segment when necessary.
This is r- key routine. Other services used are: Step
Lists, Get Next SX, and Define Field.

(9) Ste Lists. This routine steps the Level Pushdown
list once-and manipulates the index Q of the Item
List Table accordingly. Other service used:
Discount Item.

(10) Discount Item. This routine adds one to the deepest
level of the LPL which has not already reached the
limit expressed in the Subsumed Item Count.
Discount Item also steps the ILT index Q) taking
special care to reset 1 for each record in a file.

(11) Skip Item. This routine uses the item type code in
the Item List Table to skip over "'T" items and all
of their subsumed items. It is similar to the Skip
Subitems routine which operated on the Item List
segment.

3.2 SEGMENTATION

This category of service routine pertains primarily to segments, not to

logical data items The segmentation routines provide for packing and unpacking

segments, for fetching and storing segments, and for searching and updating segment

name lists. The routines depend on th. segment name list and on the format of a

segment, both of which are described in Section II.

The individual routines in the segmentation category are defined in the

following paragraphs:

(1) Name Segment. This routine searches the Segment
Name List to find the sogment name corresponding
to a given Identifier (ID). The ID may be an IPC,
an ICC, or a term name, This service also obtains
the identifter of the next segment, I. e., the Segment
identifier Right (SIR). Other service used: Fetch
Segment.

3-9

(2) Fetch Segment. This routine calls on the Executive
Program to read the desired segment into core.
When the segment arrives, Fetch initializes the
segment pointers.

(3) Pet egment. This routine finds the segment name for
a gvnd ifier and brings the desired segment into
core. Other services used: Name Segment and Fetch
Segmcnt.

(4) Define Field. This routine saves the current bit
pointer 'Bit Pointer Left) and then steps the pointer
past the cuerent item. This makes available two
pointers which delimit the current field. If the
current segment is exhausted, Define Field calls
for the next segment. Other service used: Get
Segment.

(5) Get Next SX. This routme unpacks the next entry
of the segment index and moves it to temporary
storage. If the current segment is exhausted,
the routine calls for the next segment. Other
service used: Get Segment.

(6) Extract. This routine moves the curren't field
from the input segment to the user's buffer.
Extract is a key service. It uses tho size field
(TSIZE) developed by Ste,. Item, the size field
of the Buffer Description List, the type in the
Item List Table, and the bit pointers developtd
by Def.ne Field.

(7) Compose. This routine is the inverse of Extract.
Tt tale-sa field from the user's buffer, edits it, and
stores it Into the next available bits of the output
body. This service begins by calculating whether
the field wIll fit in the output segment. If not,
Compose calls on another 6ervice to termitnate tne
current segment and initialize a new one. Oth¢•r
service used: Step Segment.

(8) Pack SX. This routine takes the values whik•h have
been stored in the temp~ratry segment inde% by the
Write routine and moves them to the next avallab!e
nits of the output segment index. The:i, .ack SX
,sts to determine whether thu limit of ,tvailable

storage has been reached. If so, thie service calls
on another routine to terminate the c'rrent segment
L.nd initialize a new one. This spacc test is made
after the segment index is packed to assure that a
field is never separate from its aFsociated SX
entry. Other service used: Step Segment.

3- 10

(9) Move. This routine takes a field from the input
area and stores it into the next available bits o.
the output body. If the segment does not have
sufficient space available, Move calls on Step
Segment to terminate the current segment aud
initialize a new one. Other service used:
Step Segment.

(10) Initialize TSNL (TemporarX Segent Name List).
This routine does the initial bookkeeping'obe'gin
a iist which will act as the segment nam list
for an output item until the item is closed.

(11) Initialize Output Segment. This routine begins
a new segment in the output area. It sets up the
segment header, assigns a segment name, and
initializes the segment pointers.

(12) Terminate Segment. This routine completes the
packing of Me output segment and inserts terminate
symbols in the body and in the segment index.
Then, the segment is stored, and its identification
is entered into the temporary segment name list.
The active record counters, whose contents have
been wrzten on the file size entries and the file
continuation counters, are reset to zero. Other
services used: Store Segment and Catalog Segment.

(13) Store Senent. This routine calls on the executive
program to s ore a segment into the space cor-
responding to the assigned segment name.

(14) Catalog Segment. This routine puts an entry into
the Temporiayegment Name List for -i completed
Dutput segment.

(15) Step Segment. This routine simply calls on Terminate
Segment and then executes Initialize Output Segment.

(16) Incorporate TENL. Tbs routine uses the temporary
segment name list Lo update the permanent segment
natne list.

3.3 TRANSLATION

The DM-1 system permits several kinds of identification for the items in
the data pool, including generalized names, specific names, internal names,
external names, IPC's, etc. The translation services provide for the conversion of

one type of identificatlon to another.

(
3-11

I*

(1) Formal Name Translation. C-neral-purpose task
programs are written with formal names as their
inputs and outputs. This allows different data
items to be selected and bound to the task at
executL- time. The Request Processor binds the
formal name to a specific Item Position Code and
stores both in the Binding List of the task. It is
during the running of the task that the Formal
Name Translation comes into play. Whenever
the program uses the formal name, e. g., in
an OPEN call, +he Formal Name Translation
looks up the corresponding IPC.

(2) Term Name Translation. This routine supplies
the ICC corresponding to a given term name or
term name with qualifiers. This routine uses
TET Search.

(3) TET Search. This routine looks in the Term
Encoding Table and opens the file of ICC's
associated with the given term name.

(4. Retrieve Term List Entry. This routine translates
a given ICC to a term name by retrieving a Term
List segment and searching within the segment for
the entry corresponding to the ICC.

(5) Relative Item Number Translation. The relative item
numb(.r is a convenience which permits a subsumed
item to be identifid by its distance from the parent.
The number is simply the total number of items
between the parent and the desired item regardless of
item types. The base item can bt the direct parent
or a higher parent. The P-'lative Item Number
Translation steps from the base item to the desired
item in order to develop the IPC of the desired item.

:1. 4 MAINTENANCE

In the DM-1 system, the modification of system directories and other

maintz-ance functions are accomplished prim arilv by system iobs ý%hlch are described

in Section VI. However, service routines have Ixcn pr.)vided for a lew maintenance

operations which are needed dynanmically by several gt leral-purpoee ioLs.

(1) Assign IPC. This routine binds a given name to a
unique node in the scratch area or the work area of
the Data Pool.

(2) F.N__m. This routine per mits dynamic definition
of the structure (,f a scratch item or a work item.
Fix Item enters the given item definition into dh ý
system directories. The tieratlon is similar '0
that of the system job, Define-Item (ser Sect.,xA VI).

3-1TI2

(3) Assign Item. This routine executes AssIig IPC
and Fix Item. The total effect is to bind a given

name to a unique node and to enter the definition
of the named item into the system directories.

3.5 BASIC USER SERVICES

The user services are described iin Volume I with an emphasis on what they

do for the user. Here. they are repeated, but the emphasis is cXn how they accomplish

their work.

Many of the user services operate under the control of the Buffer Descr-.ption

List (BDL). In this list, the user supplies an action code, a size entry, and space

for a status indicator. A sample BDL is shown in the followi-.g example; it is fullY

explained in Volume 1.

Actio Size]Indicator Notes:
T T Transmit
T~ 24SSkip

S ~Size is given in nuimber of unitF:

T ~the unit depends on the ilem

The follow"ing paragraphs describe individual, hasic user scrvices.

(1) head. his routine odits selected dat-a thel(S from
d~ata segments intck the user's buffer area i idc'. the
conitro! of the Buffer De"Scription List. Ot-her ser-
vices u se&l Step lttern, Extract, and -Scek.

(2) Svek, rhis routine sets the data pointers ,und control
pointer i to the itemi Jusired hV the user, Lf 11'e item
is niot In the current segment, &eek gets Lhe se-ginvnt
wkhich *:'ontauis the desired item, Othcr set Vices
usedl: Namec Segynent, Fetch Svgnient, Definc S-egin~crt.
and Locatv, Item.

(3) .1,(.totcat ltomn. Th O. rduthrie steps through a segmorit
iwtnl the svstcni v'finterq a~re Set Ait ý'i desired item,
Othier serv ice u'I: -step ltenl.

(4) Write, 'Fhits :,outint ,auses tk,ý data in the catler'-
ý1]iZfer aroa to lw editted, packed into an ovctpu
segrnent~s), and vri t~en into tht- R~C Data iPoAo the,
eouti ne interpret's the 1Pufler D~escription List 'Ind
!he Item List. Ot~her iervices usted: Step tjisý
Di 5(-t,uft lt(n q kip itemn, Pack SX. anrI C`'ý!Ios

0134

(5) S:ek With Cj. This r-outinc cauvaes a strin- of it•ncms
in an input segmenL(s) to be packed inio an outi)ut
segment(s) and written tnto the HIC Data ,-ool. 'the
routine interprets thli input segment index anJ the
item List. All innut items are c:upied, up to but

xc•xuding the, item identified in the request. Other
services used: Stem, Step Item, Step Lists, Move,
and Pack SX.

(6) Insert. This routine writes an item from the us-&"s
buffer. Insert is used on an item which is open for
updating. It implies that the pointers of the input
item are not to be moved. Othpr service used:
Write.

(7) Repace. This routine writes an item from the
user's buffer and moveil the syetem pointers over
the current input item. Other services used:
Write and Locate Item.

(8) Delete. This routine marks the current output
item as missing and moves the system pointers
over the current input item. Other services used:
Write and Locate Itmni.

3.6 COMFOUND USER SERVICES

(1) Retrieve Item Segmeiit. This routine is required by
each of the OPEN services. The functions of
PRetrieve Item Segment can be summarized as
foll o s:

(a) Translate the given formal name to
an IPC.

(b) Determine which data segmnent con-
tains the data for this IPC.

(c) Stem the IPC's which delimit the
".ji•,2ed segment (Segment Identifier
Left and Segment Identifier Right).

(d) Retrieve the Item List entry for the
stem item.

(e) Build an IL Table beginning with the
stem Item down to the last item sub-
sumed by the opened item.

(t) Get the data segment containing the
opened item.

(g) Initialize the Level Pushdown List by
stepping from the stem item to the first
Item in the data segment and set all

3-14

po1ntvrs to this& itemn. (Jihcer ser vif-es
usrd: Formal Namf- i'ran~lation, Name
Segment, Fetch Segmnent, Stem, Rletrieve
11, Entry, Build 11, Table, Get 'Segment, I

and D~efine Segment,

(2) OpnfrInput. This routine performs all of the
functions of Retrieve Item Segment and Is followed

by the moving of all systr-m pointers from the first
Item In the segment to the opened item. Other
services used; Retrieve Item Segment and L~ocate
Item,

(13) Close for Input. This routine simply releases the
storage areas which the system was using for the
opened item.

(4) O for Writin. This routine executes Retrieve
Segment; t en, it initializes ! temporary

segment name list for the outprt item. Next, a
data segment is set up, and the items which precede

the opened item In the input segment are copied.
Other services used: Retrieve Item Segment,
Initialize TSNL, Initialize Output &Segment, and
Seek with Copy. A

(5) Close for Writing. This routine begins by taking
data from the segment which contains the item
which logically follows the item to be closed.
That item ond the remainder of its segment are
copied into the current output segment(s). The
final segmrent is terminated, and the Segment
Name List Is updated with all the segments which
have been created since the OPEN operation.
Then the storage areas which the system was
using for the opened item are released. Other
services used: Open for Input, Seek wcth Cropy,
Terminate Segment, Incorporate TSNL.

re n n for Wting routine. Then the Level Push-
doawn List and the system pointers are duplicated to
permit the input item to be moved independently from
the output Item. Other service used: Open for Writing.

(7) Close for Update. This service begins by copying any
remaining ata in the input item. Next, the Cloe forI
Writing routine is executed. Then, tie control storage
areas required for the update procedure are released.
(Close for Writing has released some, but not all of
these.) Other services used: Seek with Copy and CloseI

Susing ~~~~~for Wrting. edie rcrlaed te

3-15

() Retrieve Item. '1115 routine fetches data from~ any
area of the data pool and defivers it to the user's
buffpr. It essentially conisists of ar, Open, followed
by Read and Close. Other services used: Open
for Input, Read, anid Close for Input.

(9) 1! sert Danta. This routine provides an Open,
Write, and Close in reqponse to a single request.
Other services used: Open for Writing, Write,
and Close for Writing.

(10) Replace Item.t This routine logically substitutes
data from the user's buffer for existing data at any
point in the data pool. It is composed of Open,
Replace, and Close. Other services uped: Open
for Update, Replace, and Close for Update.

(11) Delete Ite-m. This service routine is similar to
Replace Item, but Delete item replaces the named
Item with a mark indicating that the item is missing.
The various kinds of indicators for a missing item
are di Rcussed in Paragraph 3. 3. 5. Other services
used: Open for Update, Delete, and Close for Update.

3.7 DETAILED DESCRIPTION OF SERVICE ROUTINES

Each of the following paragraphs describes a service routine and is followed

by the appropriate flowchart ur charts.

3-13

3.7. 1 F'etch Se-miunt

3.7. 1. 1 FuLLtional Dcscr . This service 'tOne calls on the executtve prograim

to reod the desired segment into core.

3.7.1.2 Inputs. The inputs are:

(1) Name of the desired segment.

(2) Address of the beginning of the area into
which the segment Is to be read.

(3) Address of the area reserved for systemI
control information; i.e., for the Access
Parameter Table (APT).

I3.7.1.3 Results. The desired segmaent is brought into core.

3.7.1.4 Lirectories Used. None.

3.7.1.5 Services Used. None.

3.7.1.6 Jobs Used. None.

3.7.1.7 Method of Operation. Fetch ,aiserts the variables into a Read request and

issues this request to the executive program. This is followed by another request on

the executive to check for the completion of the Read operation. When the executive

returns control, Fetch checks the segment name against the requested nome. The

pointers for the segment index and the body are initialized and control Is returned

to the caller. 4

II

(I
3-17

t4-

I 0
66.

3- 4

3.7.2 Name Segment

3.7,.2.1 .Functionral Description. This routine searches the Segment Name List

(SNL) to find the name of the segment whichi contains the inftrmation associated with

the given identifier.

3.7.2.2 Inputs. The inputs are:

(1) The caller supplies the address of the identifier
for the d&,sired Item. This identifier can be an
Item Prasition Code, an Item Class Code, or a
term name. The latter two types of identifiers
are rrefixed by unique codes which cause them
to fall into separt A areas of the SNL.

(2) Address of the beginning of the area into which
,segments of the SNL can be read.

(3) Address of an area reserv-ed for system control
information (APT).

3.7.2.3 ReslAtso The results are:

(1) Segment name of the segment containing the
desired item.

(2) Segment Identifier Left (SIL). The Identifier
for the first item Is the segment which contains
the desired item.

(3) Segment Identifier Right (011). The identifier
for the first item is the segment which
logically follows the segumnt of the desired
item.

(4) The segment pointers. The Bit Position lett
and the index for the Segment Index are
initialized.

3.7.2.4 Directories Used

f1! Segment Name List (SNL), see Section 11.

(2) Private SNL. This is a small , .;x which
provides the search program with the
initial breakdown of the SNL. It has the
same format as the SNL; each entry con-
tains an identifier, a segment nanmo, and
a flag.

1
3-19

3. 7. S. 5 Services Used. Fetch Segment.

3.7.2.6 JobsUsed. None

3.7.2.7 Method of Operation. The fol.1"ving abbreviations are used in the flow-

charts:

i - the index for the SegrnvA Name List.

IDi = the current identifier in the Segment Name List.

DI 7ý the identifier of the desired item.

SIR = Segment Identifier Right.

SIL Segment Identifier Left.

Name Segment searches the private SNL to find the first ID that is greater

than the identification f the desired item. This ID is saved becausa it might become

the Segment Index Right of the desired segmnent. Then the segment nan'e associated

with the preceding ID is saved. If the flag associated with this segment name is

apt it 4• re!4-.'ly nnmm -'f the SNL. This segment is retrieved and

searched in the same manner as the original search. Eventually, the routine comes

to a terminal segment name, i. e., one which has a clear flag. This is the name for

the segment containing the desired item. The ID associated with this SN becomes the

Segment Index Left. Then, control is returned to the caller.

C
3-20

3-21

3.7.3 Locate ILEntry

3.7.3.1 Functional Description. This routine skips over unwanted entries in an

Item List segment and sett, the pointers at an entry which corresponds to a given

ICC,

3.7.3.2 Inputs. The inputs are:

(1) An Item List segment.

(2) The Item Goal Code. This is contained in
the IL segment.

(3) The Access Parameter Table for that
segment.

(4) An Item Class Code. This is the
identifier of the desired IL entry.

3. 7. 3. 3 Resu"l",, The results are:

(1) An index (j). This points to the desired
entry in the IL segment.

(2) A pointer U. This is set at the bit which
begins the desired entry.

3. 7. 3. 4 Directories Used. Item List.

3. 7. 3. 5 Services Used. Stem, Skip Subitems.

3.7.3.6 JobsUsed. None.

3.7.3.7 Method of Operation. The following symbols are used in the flowchart:

SIL Segment Identifier Left

DI - the identifier of the desired item

X - level of the stern

k temporary storage for the level number of the highest

level at which a difference exists betwe m the DI and

the current item.

v the number of Item Goal Code digits needed.

3-22

Flowchart svrnbqls (Contd.)

index to the Item List seg'ient

T - a temporary counter which reflects the number o'

items to bx. skipped.

r a pointer which keeps track of the current Item

Goal Code -'-At.

!GC Item Goal C de

Locate IL Entry executes the Stem Routin'. 1'hi.b determines the leftmost

level L) at which the DI differs from the SIL. Now th. namber of skips required to

cause a step in the IPC at the level k is computed. The number of skips is equal tV

the sum of the IGC digits associated with all the SIL digits to thc right of level k. To

do this computation, the routine steps through the S11 counting the number of .iglts

to the 'ight of level k_, Then the routine totals thi prmer nunber of IGC digi

Assume the SIL is 1.3. 5. 2.4. 1 and the DI is 1.3, 5.6.2.4. In that case, the use of

the IGC digits movee thc IPC from 1.3. 5. 2.4. 1 to 1. 3. 5.3. Next the SIL at level k
ubtracted from the DI at level k. The remainder roftects more IL rritries Which

•e skipped. This would take the example from 1. 3. 5. 3 to 1. 3. 5. 6.

Ine k index is incremented by one, and all of the IL skips which ha%2 been

ted to this point are performed. Then the actual digit values of ihe DI (from

Sto the end) are used to direct the skipping. This ib done in the last loop of the

,owchart. This final operation would move tie example from 1. 3. 5. 6 to 1. 3. 5.6. 2. 4.

f

3(2

,4-b

+ +

P..

11*

,ilti

II II

+ +

; 4~+'

3-24

3-24

LV

3.7.4 Step Lists(
3.7.4. 1 Functional Description. This routine steps the Level Pushdown List once

and manipulates the index (J) of the Item List Table accordingly.

3.7.4.2 nu.•p. The inputs to Step Lists are:

(1) A Level Pushdown List and its associated Index, I
See Description in Paragraph 3. 1. L.

(2) An Item List Table and its associated index, j.

(3) TSIZE. A temporary storage field which has
been set by Step Item or by Write.

(4) EFFLAG. An end-of-file indicator which is
set by Discount Item.

3. 7.4.3 Results. The results are:

(1) The LPL and I are updated.

(2) The indexI is updated.

(3) TSIZE ii sometimies updated.

3. 7.4.4 Directories Used, None.

3.7.4.5 Services Used. Discount Item.

3.7.4.6 Jobs Used. None

3.7.4. 7 Method of Operation. If the current item is a record and the erkl-of-file

indicator is set, Step Lists performs the following operations:

(1) The data size (TSIZE) is set to zero, thereby
indicating end-of-file status.

(2) Discount Item is executed.

(3) The indexits stepped once, and the routine exits.

If the previous circumstances do not apply, Step Lists determines whether

the current item is a nonterr inal item. If it is, Index iaticremented and a new

entry is created for the LPL. The index Is stepped once, and the routine exits.

If the current item is a terminal item, the routine simply executes Discount

Item, stepsj, and exits.

(; 3-25

P4

77.

a] I

3-26

I

3.7.5 PtagM t Jn

(3. 7.5, 1 Functional Description. This routine adds one to the deepest level of the

LPL which has not already reached the limit expressed in the Subsumed Item Count.

3.7.5.2 np~uts. The inputs are:

(1) An LPL and its index 1. See Paragraph 3. 1. 1.

(2) An Item List Table and its index J.

(3) EFFLAG, an end-of-file indicator.

3. 7. 5.3 Rcsults. The resuJts are:

(1) The LPL, .1 and 1 are updated.

(2) The EFFLAG is updated.

3.7.5.4 D1rectrjcýLT . None.

3.7.5.5 Services Used. Skip Item.

3.7.5.6 Jobs Used. None.

3.7.5.7 Method of Operation, The symbol T represents the count of IL entries to

be skipped. The other symbols have been defined earlier in Paragraph 3.7.3.

The simplest path through this routine occurs as follows. The EFFIAG is

0, IPC Ql is less than SIC U, and the current item is not a record. In such a case,

Discount Item simply adds one to IPC Q) and exits.

A more complex case occurs when EFFLAG is 0 but [PC (1) is not less than

SIC Q). In this case, the level is reduced by one. If the new level is not a record, the

routine checks whether the new [PC Q1 is less than SIC (1). If it is not, the loop

c retinues until an IPC is found to be less than the corresponding SIC. Then the IPC

is incremented and the RBIT Q1 is examined. If RBIT 1 is zero, the routine exits;

otherwise, I is reset to permit processing of the next record of the file. the index

(J) is actually reset to the file entry of the ILT, but it (j) is stapped to the record entry

before it is used.

(!2
i ~3-27

A different case occurs if, when the level is reduced, the new IPC Ql is

a record. In that case, the IPC P Is compared to SIC Q: If SIC (Q is not greater, C
there are no records remaining in the file. The EFFLAG is set, andj it reset to the

file entry, This causes the system to give an end-of-file status on the next call.

If SIC • is greater than IPC LI, IPC Lis incremented and is reset to prepar6 for

processing the next record. j
A special case occurs when EFFLAG is /. This means that the caller will

receive an end-of-file status an this request. EFFLAG is cleared, the entire record is

skipped in the ILT, and the normal LPL updating is performed.

3!

3-88t

4-1

-Y4

ell

prora

Ih v

10 PW

ý4
z

L

wk

%10he .

3-29

ý44-

3.7.6 Step Item

3.7.6.1 Functional Description. This routine steps all of the control po~nters and

data pointers to the next item, retrieving the next data segment when necessary.

3.7.6.2 Inputs. The inputs are:

(1) The current level number, 1.

(2) The Item List Table and its Index, J.

(3) A temporary level number (Y). This identifies
the level of a missing data item and implies that
no data exists at deeper levels.

(4) The data segment.

3.7.6.3 .. esults. The results are:

(1) TSIZE. The size of the current data item.

(2) TNULL. This is a binary switch which
indicates whether a field is fixed length.

(3) g. This is a temporary storage for the
p'receding value of J.

(4) An updated, LPL, 1, j and Y.

(5) BPA, BPL. These are two data pointers which
delimit the current item if it is a field.

3.7.6.4 Directories Used. None.

3.7.6.5 Services Used. Step Lists, Get Next SX, and Define Field.

3.7.6.6 Jobs Used. None.

3.7.6.7 Method of Operation. Step Item always clears TSIZE and TNULL. There-

fore, these fields contain zero unless explicitly set elsewhere in the routine. The

routine skips all null nodes and all items with a No Data Flag set.

If the current level (1) is greater than Y, this indicaten that the psr't

of the current item 13 missing. The routines executes Step Lists and exits.

If the segment index declares that an optioal item is missing, Step Item

puts the current level Q into Y, executes Step Lists, and exits.

3-30

(If none of the above exits have occurred, Rtep Item sets the TSIZE field.
For fliles and variable length fields, the size io taken from the segment index. Odier-

wise, tk1, size entry of the Item List Table is moved to TSIZE. Nf the item is not a

variable length field, TNULL is set to i.

After TSIZE is set, it is tested, Ifilt is zero, there io no data for the

current item. The current level L)is put Into Y, Step Lists is executed, and the

routine xidts. If the data is present, the current item type is checked. Uf it is not

a field, Step Lists is executed, and live routine exits,

For fields, Define Field is used to compute thr, delimiting field pointers..

Then Step Lists is executed and the routine exits.

3..31

r4

* ~3-n2

3.7.7 Define Field

C 3.7.7.1 Functional Description. This routine saves the current body pointer (Bit

Pointer Left) and steps the pointer over the current item. This makes available two

pointers which delimit the current field.

3.7. 7.2 np.uts. The inputs are:

(1) The data segment.

(2) The current body pointer (BPL).

(3) The Item List Table and Its index, J
(4) TNULL. This is an indicator which

implies the need for a null bit.

(5) TSIZE. This is the size of the current
data item.

(6) Segment Index Right (SIR).

3.7.7.3 Results. The results are:

(1) BPA and BPL. These are the two pointers
which delimit the current field.

(2) A new data segment. If the field was not in
the current segment, a new data segment is
retrieved.

3.7.7.4 Directories Used. None.

3.7.7. 5 Services Used. Get Segment.

3.7.7.6 JobsUsed. None.

3.7.7.7 Method of Operation. If the current aegment is already exhausted, Define
Field calls on Get Segment to retrieve the next data segment and to Initialize the

data Ojonters. Define Field saves the current bod pointer, then computes a new
one. The computation is primaril3 the multiplication of TSIZE, which has been st

by Step Item, times U, the number of bits in one unit of the field. Define Field

selects the appropriate U-value, based on the type of the field as defined in the ILT.
TNULL Is added to this product to provide spaoe for the null bit Uf the field is fixed

length.

3-33

I

04+

1 _____3-34

3.7.8 Get Nei SX

3.7. 8.1 Functional Description. This routine unpacks the next entry of the sigm ent

index and moves it to Lemporary -torage.

3.7.8.2 Inputs. The inputs are-

(1) The data segment.

(2) The current SX pointer.

(3) Segment Index fIight (SIfi).

3. 7. 8.3 Results. The results are:

(1) An SX entry in temporary storage.

(2) A new data segment, if the current
SX was exhausted.

3.7.8.4 Directories Used. None.

3. 7. 8. 5 Services Used. Get Segment.

3.7.8.6 Jobb Used. None.

3.7.8.7 Method of Opezation. If the current segment is already exhausted, Get
Next SX calls on Get Segment to .'etrieve the next data segment and to in!titIze

the data pointers. Get Next SX unpacks the segment index entry, moves it to tem-

porary storage, and updates the SX pointer.

&-3I

I-I

0

3-343

3.7.9 Skip Item

3.7.9. 1 Functional Description. This routine moves the index •.) of the Item List

Table over "1r" items and all of their subsumed items.

3.7.9.2 Inputs. The inputs are:

(1) The Item List Table and its index, j.

(2) T. This is the number of items to be skipped.

3. 7.9.3 Results. The results are:

(1) Index j is updated.
(2) T is reduced to zero.

3.7.9.4 Directories Used. None.

3.7. 9.5 Services Used. None.

3.7.9.6 Jobs Used. YnTne.

3. 7. 9. 7 Method of Operation. For records and statements, Skip Item adds the size

entry from the Item List Table to the skip counter, T. Otherwise, the routine

amounts to a loop which increments j and decremc ,s T until T is zero.

33

3-37

An.n. • • nm ~m i m m • N• m m ,•• 1 • i ~

04-

E.E-4

040

3-38

." 1 -

+

iC

S-3'--

=_7l

3.7. 10 Define Segment

C 3. 7. 10. 1 Functional Descriptli. This routine steps the Item List Table from a

parent item to Lhe first item in a segment, and it initializes the data pointer of the

segment.

3. 7. 10.2 nputs. The inputs are:

(1) The identifier af the destie d item. In this case,
the ID is the Segment Index Left.

(2) k_. This is the level of the parent item. This
item can be the opened item or the stem of
the segment of the opened item.

(3) An Item List Table.

(4) An area for the Level Pushdown List. The
LPL already contains at least the IPC digit
on level k and the J entry on level k + 1.

(5) The data segment.

3.7. 10.3 Results. The results are:

(1) An updated LPL, 1. and.

(2) Y. This control word is reset to its maximum value,
which renders it inoperative until it is set.

(3) The data pointers. These are initialized to the
beginning of the body and the beginning of the SX.

3. 7. 10. 4 Directories Used. None.

3. 7. 10. 5 Services Used. Step Item.

3.7. 10.6 Jobs Used. None.

3. 7. 10. 7 Method of Operation. Define Segment sets Y so that no data is manipulated
when Step Item is executed. The current level 01 in forced equal to k. (See input

description). Index. is set to the parent item at which the stepping procedure is to

begin. After this, Define SegmenL simply keeps calling on Step Item until the IPC

of the current Item is equal to the given IPC.

3-39 .,

3-40

3.7.11
(

3. 7. 11. 1 Functional Description. This routine edits selected data fields frum a data

segment into the user's buffer.

3.7.11.2 Inputs. The inputs are-

(1) The Buffer Description List (BDL). See
Paragraph 3. 5.

(2) The address of the user's buffer.

(3) Access Parameter Table. This contains the
LPL and the system control information
for a given data segment.

3. 7. 11. 3 Results. The results are:

(1) The data fields. These are delivered to the
user's buffer.

(2) Status indicators. These are put into the
BDL as required.

(3) System Pointers. The data pointers and
the control pointers in the APT are updated
for each item processed.

(4) New Data Segment. If required to satisfy the
request, new data segments are retrieved.

3. 7. 11.4 Directories Used. None.

3. 7. 11. 5 Services Used. Step Itezt, Extract, and Seek.

3.7. 11.6 Jobs Used. None.

3.7. 11. 7 Method of Operation. The following symbols used in the flowcharts have not

been previously explained:

(1) TL. This is a temporary storage for the level
number of the i-'-m hetng ?r-.um.e1ed.

(2) TIPC. This is a temporary storage for an IPC,
which is used as an input to Seek.

(3) &. This 's a temporary storage where the old
value of is saved beforeI in stopped. toh
Read routine uses Step Item to identify the 4"
and size of the next input item. Read itelf
interprets the Buffer Description List. There
are two principal operations: Transmit and

3-41

Skip. For nonterminal items, Transmit simply
requires stepping to the ne'.L item. Actually, this
stepping is done at the very beginning of the routine;
this is the reason for using index g instead of 1.

For fieldb, Transmit requires that data be put in
the user's buffer. If the item is missing, the
buffer field is filled with a null value. If the
item is present, the Extract routine is used to
edit the field from the data segment to store
it in the buffer field.

For a Skip operation, the Read routine executes
Step Item until a step occurs at level TL indicating
that all subitems of the item being processed have
been skipped. If the end of the data segment is
reached before this operation is completed,
Read turns to a random retrieval. It calls on the
Seek routine to move the data pointers and the
control pointers to the end of the item being pro-
cessed. To use Seek, an IPC is generated which
might not correspond to a real item, but which
causes Seek to do the required work. Since the
item might be nonexistent, the Read routine
clears the missing item indicator.

The Read routine continues stepping through the
BDL and performing Transmit or Skip operations
until all entries of the BDL have been processed.

0
J3-42e

IUI

~ills

3-4

0
- N

ii
11

jI�

I

11*

-J

- '-.1-

I

4 I

a z

0

3-44 . . - -

(3.7.12 Write

3. 7. 12. 1 Functional Description. This routine causes the data in the caller's buffer

area to be edited, packed into an output segment, and written into the data pool.

3. 7. 12. 2 Inputs. The inputs are:

(1) The Buffer Description List (BDL), see Paragraph 3. 5.

(2) The address of the user's buffer.

(3) The Access Parameter Table. This contains the LPL
and the other system control information for a given
data segment.

3. 7. 12.3 Results. The results are:

(1) Output Segment. The user's data is put into the output
body, and the required cortrnl values are put into
the output segment index.

(2) System Pointers. The data pointers and the control
pointers iL. the APT are updated for each item pro-
cessed.

(3) EFFLAG. The end-of-file indicator is set when the
BDL entry for a record. item is zero.

(4) TSIZE. The data size is set. This is used either
by the Compare routine or by the Step Lists routine.

3. 7. 12. 4 Directories Used. None.

3.7.12.5 Services Used. Step Lists, Discount Item, Skip Item, Pack SX,

and Compose.

3.7.12.6 Job. Used. None.

3.7.12.7 Method of Operation. Tile following new symbols are used in

the flow,'harts;

(1) T•X. This is the temporary segment index, where
SX values are kept temporarily to be sure that the.-
go into the same segment as the associated field.

3-45

-i 4 •

(2) NDF. This is the No Data Flag of the Item List.

The Write routine itself steps through the user's Buffer Description List. It

calls on the Step Lists routine when the system lists must be stepped.

For each item, Write tests the option code in the ILT. If the code is set,

Write tests the BDL entry to determine whether the item is present in the buffer.

The option code in the temporary segment index is set accordingly. If the item Is

miissing, and if it is a field, Write goes into its Item Completiom Procedure. This pro-

cedure includes:

(1) The stepping of the system lists.

(2) The packing of the temporary segment index
into the output segment.

(3) The stepping of the BDL to the next entry.

If the item is missing, and if it is a nouterminal item, Discount Item is

executed to account for this item in the system lists. Next, Skip Item is executed to

pass over any subsumed items. Then the segment index is packed and the BDL is
stepped.

For nonoptlonzl items and optional items which are pr• . nt, #he Write

romtine is subdivided according to item type. After the unique processing, the branchrs

come aack together for the item completion procedure.

The Write routine repeats the above sequence until it encounters the ter-

mination symbol in the BDL, whereupon the end of the request Is signaled.

0

i -4

Aq

*06

C Flo

i3-41
hat-, J

>N

t4q

3-48

3.7.13 Locate Item

3. It. 13. F'.nctional Descripon. The routine steps through a data segment until the

system pninters are 6o0 at a desired item.

3.7. 13.2 Inputs. The inputs tre:

(1) TL. Aencess Pargmeter Table.

(.2) The [PC of the desired item.

3.7. 13.3 Results

(1) The Access Parameter Table. The LPL and all
control pointers and data pointers are set at the
desired item.

(2) Missing Item Code. If the given identifier does
not correspond to any node in the data pool, the
routine sets this error code.

3. 7. 13.4 Directories Used. None.

3. 7. 13. 5 Services Used. Stem and Step Item.

3.7. 13.6 Jobs Used. None.

3. 7. 13. 7 Methods of Operation. The following new symbols are used in the flowchart:

(1) BI. Thih represents the identifier (IPC) of the Base
Item, i.e., the item at which the system pointers are
set when control is transferred to the Locate Item
routine.

(2) k.. This represents a level number. It is the leftmost
level at which the IPC of the desired item differs from
the IPC of the current item.

Locate Item begins by executing the Stem routine, which matches the

current IPC against the [PC of the desired item. This produces X, which is the number

of consecutive [PC digits (starting from the left) which match. Locate Item executes

the Step Item routine repeatedly until the [PC's match on digit X +-1. Then Step Item

is used until the current [PC matches the desired item on digit X + 2. This procedure

continues unLil the terminate symbol is detected in the IPC of the desired item.

3
i 3-49

4 i •

afF

o 00

17

3.7.14 Seek

3.7. 14. 1 Functional Description. This routine sets the data pointers and the control

pointers to the item identified by tV 3 requestor.

3. 7. 14.2 I•puts. The inputs are:

(1) The Access Paramc'Ar Table.

(2) The identifier of the desired item. The [PC of the
opened item is assumed to be the beginning of the
identifier. The caller need only supply a suffix
for this IPC. The suffix may consist of- IPC
digits, a relative item number, or a relative item
number with a record number. If IPC digits are
not submitted as the given identifier, the Seek
service executes a translation routine before per-
forming the search for the desired item.

3. 7. 14.3 Results. The results are the same as those for Locate Item, namely:

(1) The Access Parameter Table. All controls
are set at the desired item.

(2) Missing Item Code. This is set if a non-
existent item has been requested.

3.7. 14.4 Directories Used. None.

3. 7. 14. 5 Services Used. Name Segment, Fetch Segment, Define Segment, and

Locate Item.

3.7.14.6 Jobs Used. None.

3.7.14. 7 Method of OperaUton. The following symbols are used ia the flowchart-

(1) DL This is the [PC of the desired item.

(2) BI. This is the [PC of the current item at the
time of the request, i.e., the Base Item.

(3) _k. This is a level number which is an Itput
to Define Segment.

The Seek routine performs three tests to determine where the desired t.em

it in relation to the current item. If Lhe desired item falls below the current item in

3-51

the~~~~~~~~~~ ~ ~ ~ ~ ~ ~ curn emnol- oaeIe praint eurd ftedsrdIe

is in the current sgment, but above the current item, Define Segment t used to0

intiaie uret sysegmet contrly ao Lcthe beginn opertion isrequiedt. Ifithe Locarte Item i

Segment are executed to obtain the required segment. 1Then Define Segment and

LocatP !t--i are employed to set the system controls to the desired item.

3-52 0*

[3-53

3.7.15 Seek with Copy

3.7. 15. 1 Functional Description. This routine is used during an update operation to

move a string of items from an input segment into an output segment and to cause seg-

ments to be stored when they are full.

3.7. 15.2 np.uts. The inputs are:

(1) The identifier of the desired item. This input
has the same nature as in a Seek request. See
3.7. 14. The Seek with Copy routine copies input
data up to but excluding this item.

(2) Two Access Parameter Tables. System control
information is needed both for the input ite'- and
for the output item.

3.7.15.3 Results. The results are:

(1) New Data Segment(s).

(2) System Pointers. Thr; pointers for the input item
are set at the requested item. The output indexes
are the same as the input indexes, but the record
numbers in the output Item may differ from those of
the input.

3.7. 15.4 Directories Used. None.

3.7. 15.5 Services Used. Stem, St/',p Item, Step Lists, Move and Pack SX.

3.7.15.6 Jobs Used. None.

3.7. 15. 7 Method at Operation. The major control in this routine is similar to the

control in Locate Item. The current IPC and the UPC of the desired item are stemmed.

Then, after each item is processed, the IPC's are compared at the current level of

difference N. When the entire IPC of the desired item matches the current UPC, the

routine exits.

The processing for each itput item begins with Step Item. This Is followed

by a test of the optional code. Ifan item is optional and missing, the segment index

entry to set to uro, and th entire item is skipped. If the item In present, the

routine branches to ,lfferent processing paths based on item type. The processing of

3-54

fields ts simpler than In a Write operation. because no special stmUm is requirod

•rP for null bits or null values. These elements are moved from bIat to output in the

same manner as data items.

The acba storing o full segments is Initiated during the Move routine

and the Pack SX routine.

$IgoV ~i

.�- -. * __

r

4d@

Iia
U

9

0

U

I-
-- -�

hi III
0

z
* I
,�

a
S

I.

Mci

� I

Iii
I
'S

a

I
ii

3-86

- ----- a--
4

� .� i-Si, _________________________ * *�.

hee

fdi

C" I
o nw,"M

OIN
14I

POOQ

M3-6

SECTION IV. JOB SUPERVISOR

The DM-l Job Supervisor is that portion of the system which directly responds

to job requests. The Supervisor is responsible for creating and maintaining tCe records

requ!ied to oontrol the orderly exectution of a job. In addition the Supervisor is responsible

for trwfnrring control to the various programs of a job in the appropriate sequence.

The Supe.rvisor programs can be divided into two log"call groups:

(1) The Request Processor, which responds to the job request and
determines which programs must be run.

" (2) The Job Manager, which supervises the flow of program control
throughout the execution of the job.

4.1 DYNAMIC TASK LIST

Each job In the DM-l system is made ujý, •f one or more tasks. A task is

composed of a program with its Input items and oput items. When i given job is

roquesWed to be ran, the system prepares a list of the tasks which oonstitute that job.

This list, the Dynamic Task List, defines the sequene of programs to be executed and

the data upon which they are to operate. All of the functions of the Job I...pervlsor

relate in some way to this list.

4-1

NOW-

The structure of the task list is shown in Figure 4-1. The list contains one

record fnr each task in a job. The record begins with three fields containing the type,

identification, and length of the task program. The DM- I system uses this information

to control the loading of the program. The rest of the task list record consists of two

binding lists, the Input List and the Output List. Each task input or output data iter'

is represented by a record on one of these lists. The record contains three fields which

relate the formal name used by the programmer to the system identifier (IPC) of the

dP.ta to be processed by this job.

Three kinds of tasks can appear in the 1)ynamic Task List:

(1) BasIc Tasks,

(2) Library Tasks, and

(3) Implied Tasks.

The basic tasks are the tasks which are part of the Job Supervisor itself. The

library tasks are the tasks which constitute the job as it was described and entered into
the Job Library. These are the principal processing ta~ks of the job. The implied tasks

are tasks, such as Restructure, which preprocess input items to make them acceptable

to the job. They are inserted into the Task List by t,,e system if the job request indicates

that preprocessing of the job input is required.

4.2 REQUJEST PROCESSOR

The Request Processor is that portion of the Supervisor which builds most of

the Dynamic Task List. It develops the task records for both the library tasks anu the

implied tasks. The method of handling th6 library taskF. reflect& a design decision to

build as much of the Task List as ponssible at the time the job is described. This approach

reserves until job-request time only tl it processing which ir required to preserve

flexibility in assigning job inputs and job outputs.

The.principal inputs to the Request Processor (refer to Figure 4-2) are the

request itself, the Static Task List and the Job Item List. The primary output is the up-

dated Dynamic Task List. However, some requests also cause the Request Processor

to write scratch items which are used during the execution of the job.

0
4-2

C ~DYNAMIC TASK LIST, F

TYPE, B, 3

TASK ID, 1, 12

NUMBER FLOATS, I, 3

INPUT LIST, F

FORMAL NAME, A, V

TYPE, B, 3

IPC, H. v

OUTPUT LIST, F

!'QRMAL NAME, A, V

TYPE, B, 3

IPC, H, V

Figure 4-1. Dynamic Task List

4-3

INPUTS OUTPUTS

JOB REQUEST
REQUEST -4 DYNAMIC TASK LIST

STATIC TASK LIST PROCESSOR
-' SCRATCH ITEMS

JOB ITEM LIST

Figure 4-2. Overview of Request Processor

The two Input Lists are developed when the job is entered into the Job Library.

The Static Task List (Figure 4-3) parallels closely the structure of the Dynamic Task

List.

STATIC TASK LIST, F

TYPE, B, 3

TASK ID, I, 12

NUMBER FLOATS, I, 3

INP'JT LIST, F

FORMAL NAME, A, V

CLASS, I, 3

I/O R-NO, I, 15

OUTPUT LIST, F

FORMAL NAME, A, V

CLASS, I, 3

I/OR-NO, I, 15

Figure 4-3. Static Task List

The Request Processor converts records of the Static Task List into records

of the Dynamic Task List by inserting an IPC into each record of the binding lists in place

of the I/O R-No. To facilitate this operation, another' list, the Job Item List, is developed

by the DM-l system when a job is entered into the library. The Job Item List contains

4-4

C one record for every unique item required by a job. Within tWe Static Task List, each

binding list record contains a reference to the Job Rtem List; this reference is the I/O

R-number. If an item is used by more than one tack, it appears only once in the Job Item

List. Then, a reference to this record appears in the binding list .f every task which

uses this item. This arrangement speeds the conversion of the Static Task List records

to Dynamic Task LVt records. Section V contains additional information on the job

description procedure and on the creation of the Static Task List and the Job Item List.

This method of operation of the Request Processor points up a key function,

namely the uelection of the proper IPC for each record in the Job Item List. The Job

Item List helps in the distribution of the IPC's to the binding lists. However, this is not

possible until the Request Processor obtains the correct IPC for each item named in the

Job Item List. This operation, and all of the request processing, is accomplished by

three tasks:

(1) RQ Scan. This task edits and tests the external job request and
I stores the substance of the request in a data pool file (RQ List).

(2) Spscift Item. This task produces an RQ-IPC List which contains
an IPCor a null indicator for every job input and job output. In
addition, Specify Item produces a record in the Implied Task List
for each DM-I utility task required by the job request.

(3) Upate Dynamic Task List. This task inserts IPC's into the
binding lists, and it inserts implied tasks and library tasks into
the Dynamic Task List.

These tasks, which make up the Request Processor, are explained in greaier

detail at the end of this section.

4.3 JOB MANAGER

The Job Manager supervises the flow of program control throughout the

execution of the job. The Job Manager operates at the beginning of each job, at the-

end of each job, and during each task-to-task transition. The Job Manager is principally

composed of two tasks (RQ Bootstrap and RQ Terminate) and a core-resident routine

(Task Terminate).

4-5

Figure 4-4 shows the flow of contiol in a DM-I job. The use,: at a console

initiates the job request. This causeb the t.ecutivw program to load and transfer

control to the first DM- I progra- , the RQ Bov, strap. The RQ Bootstrap creates a new

Dynamic Task List and inserts task .-ec -ds for ". -remaining tasks of the Job Super-

visor. This use of the Task List, cien fer yster , 'o,... arms, simplifies the flow of

control in the DM-l system. Wheii this operation ts completed, the RQ Bootstrap

transfers control to the core-resident Task rerrr:at, - .itine. Task Terminate uses

the Executive program loader to load the next task program: then, control ib trans-

ferred to this new program.

The three tasks following the RQ Bootstrap constitute the Requert Processor

(See Figure 4-4). Each task ends by triansferring control to Task Terminate, which

loads and executes the next program. By the time the third task of the Request Pro-

cessor (Update DTL) is completed, the implied tasks and library tasks have been in-

serted into the Task List. Therefore, at the end of Update DTL, Task Terminate calls

in the program for the first implied task. The sequence of a task program followed

by Task Terminate is repeated until control is transferred to the last task cn the

Dynamic Task List, RQ Terminate. RQ Terminate deletes all information which was

required only during the running of the job. Then, control is transferred to the

executive program.

A more detailed description of the programs of the Job Manager is presented

at the end of this section.

4 JOB EXTENSION

Up to this point, the Job Supervisor has been described in reference to the

processing of job requests received from a console. The DM- I system can also pro-

cess requests generated by a running task program. While this facility adds sub-

stantial power to the system, it requires modifications to the Supervisor" which pror . es

console jobs rather than a separate Job Supervisor. The processing of Job Extens; i..-

requires the addition of a core-resident routine to the Job I tanager and the addition of

a task to the Request Processor.

4-6

L 2qw i (Reeldal Porin

Re-pest Directory R speswt Directoy

Basic Teask ~ist Dynamic Task List

AcinGraph r~'scan 1 Scratch Items

Job Item List Spcf mplied Task List

RQ LAst Item It(-IPC List

Dynmic Task List UpdVv Omstt Task List.mplied Task Uis(ITL
Sttic Task List
RQ-IPC List

Na Pils e nt Mi

R""ADuwu INRcyeet Dir"ctory
Dy~ahTerTeak U

Ta~b usk Ns

Tn~. ~Paren
Rae Jab

Fpr4-4. Plow of Task in a Job

4-7 -

The Job Extension causes a new Dynamic Task List to be generated. This

list is essentially the same as the one described for console requests. It contains tasks

for processing the request, implied tasks library tasks, and RQ Terminate. The

entire task of the Job Extension is executed (before control) is returned to the parent

job.

If the originating task executes a Job Extension as a subroutine, control is

returned to this task program at the completion of the Job Extension. However, the task

program may indicate in the Job Extension request that control should not be returned

to this task. This means that the parent task, and perhaps the entire parent job, is

logically complete before the Job Extension begins.

The DM-1 system handles these variations in a straightforward manner. At

the end of the Job Extension, control is always transferred to the parent job. If the

request so indicates, control is returned to the task which originated the request.

Otherwise, control is returned to the beginning of the task which follows the originating

task. If the parent job was logically complete, this following task will be the RQ Terminate

for the parent job.

The originating task initiates a Job Extension by transferring control to a

resident portln of the Job Manager, called the JX Processor. This routine writes

all the information which is necessary for continuing the originating job. Then, it

writes the Job ER.-nsion request and calls in the RQ Bootstrap. The remainder of

the job flow is the same as for a console request, with one significant exception. A

special task, JX SCAN, is used in place of RQ SCAN to do the initial processing of the

request message. Then, standard processing is resumed until the end of RQ Terminate.

Here, control is not transferred to the Executive program, but to the parent job.

4.5 TEMPORARY ITEMS REQUIRED BY JOB SUPERVISOR

Several data items are used by the Job Supervisor during the execution of a

job. These items f0l Into four categories:

(1) Reserved Core Items,

(2) Request File,

C

4-8

io_ _

(3) Request Directory, and

(4) Scratch Items.

4.5.1 Rteerved Core Items

A few items need to be maintained by the Job Manager in a portion of core

which is reserved throughout all of the tasks of a job. The principal items kept here are:

(1) The current job record number in the Request File,

(?) The current task record number in the Dynamic Task List, and,

(3) For Job Extensions, the record number of the parent job in the
Request File.

4. ': 2 Requeht File

This file contains one complete record for every job which is active, I. e.,

p.,:tally Drocessed. Within the record is the external information that the Job Super-

visor m'- maintain during the execution of a job (see Figure 4-5). The use of these

itezms Is .plained in conjunction with the flow charts included in this section; however,

thLer slignttcaae can be summarized as follows:

""I) Parent Task.

!• p Data. These two items are needed to return to the originating
* at the end of a Job Extension.

S3) HQ List. This list contains the substance of a job request after the
initial editing by RQ Scan or JX Scan.

!•Implied Task List. his list is temporary btorage for the task
records of DM- utility tasks required by the job.

(59 RQ-IPC List. This list is temporary storage for the IPC's before
they are inserted into the binding lists.

(S Task L . Thb, defines th- sequence of programs to
be executed and the data items upon which they are to ope*tt .

(71 J. This is temporary storage for Job Extension infor-
nation befor* the RQ Bootstrap begins the Job Extenslon.

4-9

S i '-' m

RQ FILE, F
PARENT TASK, H, V
*DUMP DATA, S, 2

DUMP ID, 0, 4
RETURN ADDRESS, 0, 4

*JRQ LIST, S, 2
JOB NAME, A, V.
RQ ITEMS, F

CODE, 0, 1
NAME, A, V

IMPLIFD TASK LIST, F
TYPE, B, 3
TASK ID, 1, 12
NUMBER FLOATS, 1, 3
INPUT LIST, F

FORMAT NAME, A, V
TYPE, B, 3
IPC, H, V

OUTPUT LIST, F
FORMAL NAME, A, V
TYPE, B, 3
IPC, H, V

RQ-IPC LIST
JOB NAME, A, V
JOB R-NUMBER, H, V
IPC FILE, F

IPC, H, V
DYNAMIu TASK LIST, F

TYPE, B, 3
TASK ID. 1, 12
NUMBER FLOATS, 1, 3
INPUT LIST, F

FORMAL NAME, A, V
TYPE, B, 3
IPC, H, V

OUTPUT LIST, F
FORMAL NAME, A, V
TYPE, B, 3
IPC, H. V

*JX REQUEST, S. 3
DUMP DATA, 8, 2

DUMP 11). 0, 4
RETURN ADDRESS, 0, 4

PARENT TASK. H, V
REQUEST, A, V

Figure 4-5. Requet]Pile

44-10

4.5.3 •u •x est Directory

This is a simple file which contains one record for every record in the

Request File. The purpose of the directory is to prevent the record numbers of the

Request File from changing each tirme a job terminates. RQ Termixate, Instead of

deleting a record of the Request File, simply deletes all of the data from the record.

Then, an indicator which declares this record to be available is stored in the corresponding

record of the Request Directory. The indicator is changed when the Request Record

is assigned to a new job by the RQ Bootstrap.

4.5.4 Scratch Items

The tasks of a job may. aduce several intermediate itemis which are not

needed after the job is completed. The number and structure of such items can vary

considerably from one job to another. Since all such items are deleted at the end of

a job, the DM-1 System groups all of the scratch items associated with a given job. One

primary node in the scratch area is assigned to each job, and each scratch item required

b' the job is subsumed under that node. For simplicity, these primary nodes are

assigned in parallel with the records of the Request File. The first node is reserved

for the first Request Record, the second node is associated with the second record, etc.

This arrangement facilitates not only the deletion at job termination time, but also the

identification of scratch items during the job.

4.6 DETAILED DESCRIPTION OF JOB SUPERVISOR PROGRAMS

Each of the following paragraphs describes a Job Supervisor program and

is followed by the appropriate flow chart or charts.

(
S~4-iI

4.6.1 RQ Boots
4.6.11I .Fictlonal Description. This task creates a task list containing the standard

tasks required for every job. This includes the tasks for processing the request message

and the task for terminating the request.

4.6. 1. 2 Inputs. The inputs are:

(1) Basic Task List, and

(2) Job Extension Indicator.

The Job Extension Indicator is set by the Job Manager, after it has called

on the Executive program to load the RQ Bootstrap. It is aot set if the bootstrap has

been loaded in response to a console request.

4.6.1.3 Results. The results are:

(1) Dynamic Task List,

(2) Request R-number (this is saved in an area of core which is not
available to user tasks), and

(3) Task R-number (this field is also in reserved core; It is set to
zero by the RQ Bootstrap).

4.6.1.4 Directories Used. Request Directory.

4.6.1.5 Services Used.

(1) Open for Input.

(a) Close for Input.

(3) Open for Output.

(4) Close for Output.

(5) Open for Update.

(6) Close fo? Update.

(7) Read.

(8) Write.

4-12

-@

Ii

4.6.1.6 JobsUsed. None.

4.6.1.7 Method of Operation. The RQ Bootstrap searches the Request Directory for

the lowest record number in the RQ File which is not in use. This number is assigned

to the new request, and the directory is updated to reflect this assignment. This RQ

record is either an old record from which all the data has been deleted or a new record

at the end of the RQ file. The Bootstrap opens the Dynamic Task List which is subsumed

in the assigned record of the RQ file. Then, the standard tasks, which are defined

in the Basic Task List, are copied into the Dynamic Task List.

If the job is a Job Extension, a special scan task (JX Scan) is placed in the

Dynamic Task List instead of the standard scan task (RQ Scan). JOX Scan is the

first task in the Basic Task List, and RQ Scan is second. If the request is not a Job

Extension, the JX Scan is skipped and RQ Scan is written into the Task List.

The data binding information in the Dynamic Task List is divided into two

lists, an Inpt List and an Output List. A binary flag is use" '- isure that both lists

are copied for each task. While the binding information is being copied, a check is made

to identify the items which are subsumed in the RQ File. The IPC's of these items need

the R-number of the record in the RQ File which was assigned to this job. This R-number

is inserted before the IPC's are written. When the last task of the Basic Task List has

been copied, the Bootstrap moves this R-number to reserved core and sets the task

R-numberto zero. Then, control is transferred to Task Terminate.

(

Ltoo

7a

4-14-

114

ci

za

Cý 4-15

4.6.2 Task Terminate

4.6.2. 1 Functional Description. This task controls the loading of the iext task of the
current Task List and the transfer of control to this task.

4.6.2.2 Inputs. The inputs are:

(1) R-number of Request Record,

(2) R-number of Task, and

(3) Dynamic Task List.

4. S. ' Results. The results are:

(1) The new task program is in core, and

(2) The R-number of the task is updated.

4. 6. 2.4 Directories Used. None.

4.6.2.5 Services Used. Executive Program Loader.

4.6.2.6 Jobs Used. None.

4.6.2.7 Method of Operation. Task Terminate uses the Request R-number and the
Task R-number from reserved core to retrieve the Dynamic Task List record for the
next task. The Task ID from this record is inseited into a Load Request, and the
request is issued to the Executive program. When the loading Is completed, Task
Terminate transfers control to the first instruction of the new task.

4-18

C

Si 4a.17

1 4-17

4.6.3 RQ Scan

4.6.3. 1 Functional Description. The RQ Scan task edits and tests an external job

request and stores the substance of the request in a data pool file.

4. 6.3. 2 Inputs. The input Is: the job request.

4.6.3.3 Results. The results are:

(1) The RQ List, and

(2) Scratch Items, if required.

4.6.3.4 Directories Used. Action-Graph File.

4.6.3.5 Services Used.

(1) Input Scan Routine (INSCAN).

(2) Insert Data.

(3) Executive Reaa Console.

(*) Open for Output.

(5) Ciose for Output.

(6) Write.

(7) Assign Item.

4.6.3.6 Jobs Used. None.

4.6.3.7 Method of Operation. The RQ Scan task begins by inserting a null value in the
parent field of the RQ record. This identifies the request as a console request rather
than a Job Extension. Then the task issues a call to the Executive program, which
reads the entire request into core. The job name is extracted from the request. The

task uses this name to select the proper action-graph for editing the request. Then,

the job name is written into the RQ List. The remainder of the flow chart represents
the logic that is implemented by means of the selected action-graph and the INSCAN
subroutine. INSCAN iL described in Section VIII, but the operations for which RQ Scan
uses the subroutine are described in the following paragraphs.

4-18

I

lw']uwing the job name In the request are the job Inputs an,! outputs. These

can appear in the follcwing forms.

(1) A li.eral.

(2) A Restr'icture specification.

(3) A Conditional Select specification.

(4) The name of an item which is already defined in the Term Ending
Table.

(5) A null indicator, defining that the item is not to be used in this
request.

(6) The name of a new item to be defined in accordance with the
program description.

During the editing process, one item is written into the RQ List for each

job input and job output. The item consists of a code, which specifies one of the

above six categories, and a Name Field. The latter field may contain several different

values. If the request item is a literal or a specification, it is written into the scratch

area, and its IPC is stored in the Name field. If the request item is a name or an IPC,

this is copied into the name field. If it is a null indicator, a null field is written: When

the end-of-the-request message is reached, the RQ List it closed, and control is

transferred to Task Terminate.

4-19

sq

94

8110

JJy

4-1

... , m .

4.6.4 Specfy Item)

4.6.4. 1 Functional Description. This task produces an RQ-IPC List which contains

an IPC or a null indicator for every job input and job output. In addition, Specify Item

produces a record in the Implied Task List for each Restructure or Conditional Select

",equired by this job request.

4.6.4.2 Inputs. The inputs are.

(1) The RQ List, and

(2) The Job Item List.

4. 6.4.3 Results. The results are:

(I) The RQ-IPC List, and

(2) The Implied Task List.

4.6.4.4 Directories Used.

(1) Job Name List.

(2) Term Encoding Table.

4.6.4.5 Services Used

(I) Open for Input.

(2) Close for Input.

(3) Open for Output.

(4) Close for Output.

(5) Read.

(6) Write.

(7) Retrleve.

(8) Assign Item.

(9) Assign IPC.

(10) Translate Term Name.

I

.1
... -. .. , -. ..-. " !..-, . ,

..t ,r , . -"

4.6.4.6 Jobs Used. None.

C 4.6. -^. 7 Method of Operation. Specify Item begins by reading the name of the re-

quested job from the RQ List. This name is used to retrieve the associated record

from the Job Name List, which is an ordered file. The Job Name Record contains a

record number which points to the Job Item List of the requested job. The Specify

Item Task is controlled primarily by this Job Item List. This list contains an entry

for each unique data item required by the job. Specify Item must provide one IPC

or null indicator for each Job Item entry. The IPC is obtained by different methods,

depending on the class to which the Job Item belongs. The item may be:

(1) A Job Input-Output.

(2) An Intermediate Input-Output (scratch).

(3) An Internal Item.

(4) A Literal.

(5) A Null Indicator.

These classes are described in Paragraph 5.2

/7 The Job Input-Output items require the most complex processing. These

are the items which must be specified in the job request, and they can be specified in

several ways. For each Job Input-Output item, Specify Item reads the RQ List and

writes an iPC into the RQ-IPC List. Depending on the code in the RQ List, the IPC is

obtained by one of the following methods:/
Code Method

I The IPC is taket directly from the RQ List entry.

2, 3 The IPC is obtained by assigning a Scratch Item for an implied
task. This procedure is described later.

4 The IPC is obtained by translating the term name contained in
the RQ List.

5 No IPC is needed. A null field is written into the RQ-IPC List.

6 The IPC is obtained by defining a job output in the Work Area
AM using its IPC.

(

, .,,

•,? \,

\. A ,

The items that require an implied task are those for which the request

contains a Restructure specification or a Conditional Select specification. For each

such item, Specify Item creates a task description. The task identification is a

program constant. The task input is the IPC of the specification which was stored in

the Scratch Area during the editing of the request. The task output is a Scratch Item

assigned by Specify Item. The IPC of this item is written both as the output of the

implied task and as the next IPC in the RQ-LPC List.

The processing Lt less complex for the Job Item List entries that do not

belong to the Job Input-Output class. For the intermediate ite-ms, Lim ilem is assigned

to the Scratch Area, and its IPC is written into the RQ-IPC List. For null inputs, a

ir.ll field is written. For null outputs, a Scratch Area is assigned in case the user

program is not prepared to bypass the writing of the item. Finally, for literals, the

IPC of tho literal is n~rE from the Job Item List to the IQ-IPC List. When .he end

of the Job Item List is reached, control is transferred to Task Terminate.

0

5 4-24

ot, Liiii!I"

IIt

4h2

I- FJ z

I))

4-26

11{, ! ~

I. _

I i

•) c)K

4- -

4,. . F'rci.Xna Dencriptic-, Tlids task cozrap te.ý the -ask ,1 t ýnv 0r

10 o.

1 6.5,2 inputs. TL,, inputs are:

(I) The Dynamic Task List,

(2) The Implied Task Lict,

(3) The Static Task List. and

(4) The RQ-IPC List.

4 ý! 5.3 Results. The result is: the Dynamic Task List is updated,

4.6.5.4 Directories Used. None.

4.6.5.5 Services Used

(1) Open for -Updat•

(2) Close for Updeat(-.

(3) Open for Input.

(4) Close for Irput.

(5) Seek with Copy.

(6) flead.

(7) Write.

4.6, 5.6 Jobs Used. None.

4.6.5.7 Method of Operation. Update DTL completes the Task List for the requested

job, First, the iLplied tasks are written into the list immediately following the record I

for Update DTL itself. Next, the entire RQ-4PC List is read. The job name is saved,

aid a table of IPC's is constructed,

(
4-.27

,ask List record is '.ad the ha dr j;, ds TI), tV ic copird "iti thc PvnamV

Task List. A binary .lag is used to control the rea, ing of the t,' o bhinin, lists. [h(

Inputs List and the Outputs List Fach record of these list. contains a formal name.

a type, and a pointer. The narme and type aret copied into the Dy-namic Taýsk List. Tire

point(-: is used to seiect an IPC from the IPC table. and this I-C is wr tten into the

Dynamic Task List. Thio simple operation for inserting IPC's into the binding lists is

vossible, because much of the binding work is donc at the time a job description is

defined. When the end of file is reached in the SRatic Task List, control is transferrcd

to Task Terminatte. Task Terminate loads the first task of the requested job: this

may be an implied task or a static task. Cont:'ol is transferred to the first instruction

of this task.

4-28

I- z

- II

4-29

/• --- ,I- .

C -•

C- -

4-29

+
i

* *

4-80

4.6.6 RQ Terminate

4
4-6.6. 1 Functional Description. This task deletes all information wfich is required

only during the running of a job. Then, control is transferred either to a par,-nt job

or to the Executive program.

4.6.6.2 Inputs. The inputs are:

(I) The Request Directory,

(2) The RQ File, and

(3) The Dynamic Task List.

4.6.6.13 Results, The results are:

(1) The Request Directory (updated), Vnd

(2) The RQ File (updated).

4. 6. 64 Directories Used. None.

4.66.5 Senv-Cc-UZ;C.

(1) Open for Input.

(2) Close for Input.

(3) Open for Output.

(4) Close for Output.

(5) Open for Update.

(6) Close for Update. I
(7) Read.

(8) Wrie.

(9) Delete.

(10) Executive Program Loader.

4.6.6.6 Jobs Used. None.

4-31

4. 6. 6 7 Method of Operation. The I{(rerminate task begins by opening the record

of the Request File which was assigned to this job. he parent field and the Dump

Data statement are read and saved for use at the end of Ihis task. Then, all of the data

in this RQ record is deleted, but a skeletal record is retained so that the record numbers

in the rest of the tile do not change. To develop this skeletal record. the parent field

is set to iull, the subsumed files are written with zero records. and the statements

(which are all optional) are declared to be missing. The RQ Directory ;S updated to

reflect t'c fact that this record is now available.

RQ Terminate 0j also concerned with the scratch items which were used by

the completed job. All scratch itemo associated with a given job request are sub-

sumed under a single scratch statement which is reserved for use with this record of the

Request File. Scratch statement number I subsumes the scratch items needed bN. re-

quest number 1, etc. See Paragraph 4. 5. 4. RQ Terminate deletes all the data sub-

sumed by the scratch statement associated with the job request which is being terminated.

Then all the deffitions for these scratch items are delcted, and the scratch statement

is converted to a null node.

1 ;AL, PLVjUCIL WLiUWiLCI ib iii tei_7jv4ArarY Storage, -s 11-0,d. if 'he

field is null, this means a console request has been satisfied. Control is transferred

wo the Executive program. If the pa'.ent field is present, the completed job is a Job

Extension, and control must be returned to the parent job. The parent field contains

the R-value of the parent task, which consists of a record number for the Request

File and a Lecord number for the Dynamic Task List. RQ Terminate moves these two

R-numbers into the control fields in permanent core. which the Job Supervisor uses to

keep track oi the current task.

If the Dump Data, which is in temporary storage, is null, control is trans-

ferred to Task Terminate. Task Terminate loads the task following the task whinh

generatfed the job extension. If the Duml, Data ,s present, the parent task is loaded

and control is returned to this task.

4-32

-�

/

Q

0 0

�I) �

0 .� I
0 �, I� Z I

�- ,,�

T -
O�z 0

-J
4

�

4. 6.7 JX Pro~cessor (Resident Portion)

4.6.7, 1 Fýunctional Descrijp ion. This routine prepares for the processing of' tile Job

Extension Requaest and for the resum Wpt ion of the- parent jot) after the .Joh) Extension (IX)I

has been completed.

4. 6. 7". 2 Inpu s. The inputs are:

T.) he lob Extension Request,

(2) Return Address. or Terminate Ilag, and

(3) H-Value of Current Task (in reserved core).

4. 6. 7.3 Results. The results are:

(1) A job Extension Request otatomnent in the RQ Record of the current
jobs (see Paragraph 4. 5. 2 and Figu-re 4-5). and

(2) A core dump, if required.

4.6.7.4 IDirectories Used. None.

4.6.7.5 Services Used.

(1) Executive Program Dump.

(2) Insert-Data.

4. 6. 7.6 tdbs Used. None.

4. 6. 7.7 Method of Operation. The .JX Processor Must prepare for dle con1tinluation

of the parent job, th,.t is, the job wilich initiated the Job) Exteu-ion (,JX). Thlis jot) may

he continued in the task which issued the JX (called the parent task) or at thle beginning

of the following task. In some cases, this following task may be lEQ rei~rminatt'. For

such a case, the parent job is essentially completed before the extension, but tilis

does not cause special processing.

If the parent task is '.o be resuiý-ed, the JX Processor calls onl the lEX(CLltiVe_

program to dump the core occupiod by the Wak. The identifier for Olis duinp n' 6 thle

address to be used for continuing the task are both written into thle Request Record of

4-34

the parent job. Figur,u 4-5 shows, the JX fieque::t Statement at the end of the Re

fRecord. If the parent task is not to be resumed, no data is dumpi-d. and the 13

statement is declared to be absent. In ail Oases, the R-valut, of the Darent ta-"

written. This contains an R-number for the Request File an,' an R-number for

Dynamnic Task List. The JX Proct'ssor writes the JX request into the Request

and control is transferred to the RQ Bootstrap.

43

S - }i

UI

mm (
:- --- --- •: 4

0 0S4

04tr

4-36

.4.6.8)X Scan

4. 6. 8.1 Functional Description. The JX Scan task edits and tests a Job Extension

request and stores the subst~ance of the request in a data pool file.

4. 6. 8. 2 Inputs. The inputs are:

(1i) The R-Number of tJ'e parent Job (ir reserved core), and

(2) The job extension request.

4. 6. C. 3 Results. The results are-

(1) lae RQ List, and

(2) Scratch Items, if required,

4. 6.18.4 Directories L sed. None.

4. 6. 8.5 Services Used.

(1) Open for Output.

(2) Close for Output.

(3) Retrieve Item.

(4) Write.

(5) Assign Item.

,(6) Insert. Data.

4. 6. 8.6 Jobs Used. None.

4. 6. 8. 7 Method of Operation. The JX Scan task begins by retrieving the JX Request

Statement from the Request Record of the p, ;,it job. From this statement, the JX

Scan copies the parent fiel~d and the Dump Data statement into the beginning of the Re-

quest Record which has been assignet. to the Job Extension. The job name is extracted

from the JX Request and written into the RQ List. The remainder of the request speci-

fies the job inputs and job outputs. These can appear in the following forms:

4

4-3

I
(i) A Literal. C l
(2) A Restructure specification.

(3) A Conditional Select specification.

(4) The name of an item which is already defined in the Term
Encoding Table.

(5) A null indicator, ,'efining that the item is not to be used
in this request.

(6) A scratch suffix, which identifies a scratch item associated
with the parent job.

These options for specifying input-output items are very similar to the

options available in a console request. An exception occurs in specifying the outputs

of a Job Extension. The DM-1 system does not assign new work areas for the output

of a Job Extension. However, the requester is free to have the Job Extension output

stored in one of three places:

(1) A work item which was assigned to the parent job (requestor
supplies names),

(2) A scratch item which was assigned to the parent job (requestor
supplies scratch suffix), or

(3) A scratch item of the job extension (requestor supplies null indicator).

JX Scan writes one item into the RQ List for each job input and job output

in the request. The item consists of a Name field and a code which r,.fl.cts the kind

of value contained in the Name field. If the request item is a literal, a restructure

specification, or a Conditional Select specification, the item is written into the scratch

area of the Job Extension. For these three categories, the IPC oý the scratch item is

written in the Name field. If the request item is a name, this name is copied into the

Name field. If the request item is an IPC or a scratch suffix, an IPC is put into the

Name field. For each null indicator in the request, a Name field is set to the null state.

When the entire JX request has been scanned in this manner, the RQ List is closed,

and control is transferred to Task Terminate. Task Terminate loads the Specify Item

Task and the processing of the JX Request continues.

4-38

-II

I ~ ~ H r
Ii>AlIE

~I K
-.-. / -

- I
6Th 1

4-39

4-4-0

Ir

SECTION V. JOB LIBRARY MAINTENANCE JOBS

The DM-l library is maintained by four system jobs which provide for the entry of

programs, the description of jobs, the deletion of programs and jobs, and the display of job

descriptions. These jobs are described in the following paragraphs.

5. 1 PROGRAM ENTRY

A program comes under the control of the DM-l system when it is entered into the

libra -y through the Program Entry job. Programs are compiled independently of the system

and their object code is stored under the control of the operating system. They are entered

into the DM-l system through a program specification which includes the following elements:

(1) Program Name

(2) Program Inputs (formal)

(3) Program Outputs (formal)

(4) Program Executive Control Description

The formal iMput-output parawn-'-,-,q are described by naming them and giving an

item definition for the fixed paramet, - Jr- he Program Entry job has processed the

program specification, the program becom.- a job in the DM-1 library. It may be called for

executeon by a job-run request issued by a user at a console or by a job-extension request

(issued by a running program. It may also be used as a component in a job description.

5-1

/

!I

The job request image for the Program Entry job is as follows: A
Job Request: PROGRAM-ENTRY (program name), (program inputs),

(program outputs), (program ECD).

5.1.1 F)nctional Description

Prpcrams are compiled independently of the Data Management System.

YNvpthpless. they may be entered into the system via the Program Entry job.

To do this, a formal description of the program, which consists of the

following items, must be given:

(1) Program name,

(2) Program inputs and their descrij," -ins,

(3) Program, itputs and their descriptions,

(4) Program J.CD (Executive Control Descripti.n).

The program name is the name by which the program is known to the Data

Management System, and not necessarily the identifier by which it is known to the

Executive Control Program. F rogram inputs and outputs are specified form'lly with
the name by which they are called within the program. At any subsequent time, P
particular input or output may be bound to a specific item within the data pool whenever

that item is identical in structure to the formally specified input or output. Thus, in

addition to a name, a formal inout or output specification may contain an item definitio,

to which any bound input or output item must conform. The program ECD is an

identifier by which the Executive Control Program can recognize the program. It is

necessary whenever control is passed to the executive in order to run the program.

Whenever a program is entered into the system, it automatically becomes

a one-task job. Subsequently, all references to the program are made to thi" job. In

this manner, the program may either be run directly as a job or be used as a job compo-

nent of a still larger job.

In all cases, programs are maintained within the system through appropriate

entries in the system directories. These include:

5-2

...........

(1) Program Statement,

(2) Program Description List,

(3) Job Statement,

(.) Job Description List.

The program name is entered into both the Program and Job Name Lists

of the Program and Job Statements respectively. The input-output it-m definitions

are translated and entered into the Progra.v List, All input-output names

along with the program ECD are entered into the Job Description List. In addition,

refercncees to the input-output item definitions are established.

The major items of the Program Statement include the Program Null List,

the Program List R-No., and the Program Name List. Ali missing R-numbers of the

Program Description List are listed within the Program Null List. In this manner,

new programs are entered into vacant slots of the description list. A last fl-number is

provided if there are no missing R-nurnbers. The Program Name List is an alphabetically

ordered list of all program names within the system with a reference to the corresponding

entry of the Program Description List.

The major items of the Program Description List include a Program Binding

List for each input-output Parameter of a program. This consists of an item list and

term list entry to each input-output parameter.

The Job Statement and Job Description List are described subsequently

within the Job Description job (Paragraph 5. 2).

5.1.2 i

(1) PROGRAM NAME, A, V

(2) PROGRAM INPUTS, F
INPUT, A, V

(3) PROGRAM OUTPUTS, F
OUTPUT, A, V

(4) PROGRAM ECD, A, V

5

5-3

5.1.3 Results

No outputs for the job are specified. The appropriate entries to the directories (-
constitute the results.

5.1.4 Directories Used

(1) Program Statement.

(2) Program Description List.

(3) Job Statement.

5.1.5 Services Used

(1) Open for Reading.

(2) Close for Reading.

(3) Read.

(4) Open for Writing.

(5) Close for Writing.

(6) Write.

(7) Open for Updating.

(8) Close for Updating.

(9) Seek.

(10) Replace.

(11) Insert.

(12) Delete.

(13) Retrieve Item.

5.1.6 Jobs Used

(1) Unit.

(2) TranLm'tion.

5-4

"5.1.7 Method of Operation

The Program Entry job is known to the system by the following Job Description:

Job Name: PROGRAM-ENTRY

Job Inputs: program name, program inputs, program outputs, program ECD.

Job Outputs: none specified.

Job Components:

kl) IýAMkt: program name, JOB STATEMENT;program R-iNo. field.

(2) NAME: program name, PROGRAM STATEMENT;

program auxiliary R-No. field.

(3) PRIMARY-ENTRY: JOB DESCRIPTION LIST, program R-No. field,
program name, program inputs, program. outputs,
program auxiliary R-No. field, program ECD;
program item image list.

(4) AUXILIARY ENTRY: PROGRAM DESCRIPTION LIST,
program auxiliary R-No. field,
program item image list.

The internal Job Dcecription may be represented graphically as shown ih

Figure 5-1. '1here are four tasks in the Program Entry Job. They perform the following

functions:

(1) Name. This task enters the program name into the Job Name List

of the job description library. This name will be ,,sed as the job
name for the program.

(2) Name. The task Name is used again. ' As time, the ptrameterb
are such that it enters the program namt lito the Program Name
List of the program description library.

(3) primary Entry. This task takes the two recort' ,umber-i created by
the two preceding tasks anu updates the Job Desc.-,k tion List. It
uses the Unit job in a Job Extension.

(4) Auxiliary Entry. This task takes the record number created
by task (2) and the output of task (3) and updates the Program
Description List. It uses the Translation job in a job extension.

5-5

NAME NAME R-NO. FIELD

NAME STATEMENT -

NAMF YIELD

NAME • NAME R-NO. FIELD

NAME STATEMENT

PRIMARY ENTRY LIST

PRIMARY ENTRY R-NO. FIELD

PRIMARY ENTRY NAME FIELD

PRIMARY PRIMARY ENTRY
PRIMARY ENTRY INPUTS ENTRY ITEM IMAGE LIST

PRIMARY ENTRY OUTPUTS

PRIMARY ENTRY AUXILIARY
R-NO. FIELD

PRIMARY ENTRY ECD

AUXILIARY ENTRY LIST -

AUXILIARY
AUXIIJARY ENTRY R-NO. FIELD-4-- ENTRY

AUXILIARY ENTRY ITEM IMAGE LIST ____...._

Figure 5-1. The Program Entry Job

5-6

5.1.7.1 Name

Job Roquest: NAME (name field), (name statement):
(name H-No. field).

5. 1.7. 1. 1 Functional Description. The Name Job updates the (narme stat#-rmento

the (name field) ar I writes the (name R-No. field).

5. 1.7. 1.2 Inputs

(1) NAME FIELD, A, V

(2) NAME STATEMENT, S, 3

NULL LIST, F

NULL R-NO., 1, 18

LAST R-NO., I, 18
NAME LIST, F, ORDERED (1)

NAME, A, V
NAME R-NO., I, 18

5.1.7.1.3 Results. NAME R-NO. FIELD, I, IS

5. 1. 7. 1.4 Directories Used. No directories are used unless externallv bound.

5.1.7.1.5 Services Used

(1) Open for Writing.

'2) Close for Writing.

(3) Write.

(4) Open for UpdatLrig.

(5) Close for Updating.

(6) Seek.

(7) Read. 3

(8) Replace~.

5-

5-7

(9) Insert.

(10) Delete.

(11) Retrieve Item.

5. 1. 7. 1. 6 Jobs Used. No job extensions are used.

5. 1.7. 1. 7 Method of Operation. The Null List is searched for an R-number (P,-" .) and

updated. If no R-No. is available, the Last R-No. is taken and updated. The .

and t. is corresponding Name R-No. are inserted into the Name List. In addition the

Name R-No. is written

5-

I
tI

00

Wr,

404

h.z z

r-1r
dz

ziz z
ro I z

I ~1 I 15

C. ~i I9

5.1.7.2 Primary Entry

Job Request: PRIMARY-ENTRY (primary entry list), (primary entry R-No. field),
(primary entry name field), (primary entry inputs),
(primary entry outputs),
(primary entry auxiliary R-No. field),
(primary entry ECD);
(primary entry item image list).

5. 1. 7.2. 1 Functional Description. With the Job Inputs, the Primary Entry Job updates

the Primary Entry List and writes the Primary Entry Item Image List.

5.1.7.2.2 Inputs

(1) PRIMARY ENTRY LIST, F

ID, A, V
ITEM LIST, F

CLASS, 1, 3
I/O LIST, F

TYPE, B, 3
I/O NAME, A, V
R-VALUE, H, V

STATIC TASK LIST, F

TYPE, B, 3
TASK ID, 1, 12
NO. FLOATS, I, 3
INPUT LIS T, F

FORMAL NAME, A, V
CLASS, 1, 3
I/o R-NO., 1, 15

COMPONENT LIST, F

COMPONENT NAME, A, V
COMPONENT R-NO., I, 18
COMPONENT B/O LIST, 18

TYPE, B, 3
I/O NAME, A, V
CLASS, 1, 3I/0OR-NO., 1, 15

5-10

,wwne..

F'

(USAGE LIST, F

NAME, A, V

(2) PRIMARY ENTRY R-NO. FIELD, I, 18

(3) PRIMARY ENTRY NAME FIELD, A, V

(4) PRIMARY ENTRY INPUTS, F
INPUT, A, V

(5) PRIMARY ENTRY OUTPUTS, F
OUTPUT. A, V

(6) PRIMARY ENTRY ALUXILIARY R-NO. FIELD, I, 18

(7) PRIMARY ENTRY ECD, A, V

5.1.7.2.3 Results

PRIMARY ENTRY ITEM IMAGE LIST, F

ITEM LITERAL LIST, F

ITEM LITERAL, A, V

5.1.7.2.4 Directories Used. No directories are used unless externally bound.

5.1.7.2.5 Services Used

(1) Open for Reading.

(2) Close for Reading.

(3) Read.

(4) Open for Writing.

(5) Close for Writing.

(&) Write.

(7) Open for Updiating
/

(8) Close for Updathig.

(9) Seek.

(10) Insert.

S(11) Retrieve Item.

: 5-11

-1 |,

5. 1.7.2. 6 Jobs Used: Unit.

5. 1.7.2.7 Method of Operation. If the Primary Entry List, modified by the Primary

Entry R-No. Field, indicates EOF, a primary entry list record Is inserted. In both

cases, the Unit Job is then requested as a Job Exension.

5-12

4.t

I'4 4

43 a 0 04

wra

1126 91

lki'

A.A

l. -

0'

5.1.7.3 Auxiliary Entry

Job Request: AUXILIARY-ENTRY (auxiliary entry list), C.
(auxiliary entry R-No. field),
(auxiliary entry item image list).

5. 1.7.3. 1 Functional Description. The Auxiliary Entry job translates the item image

to an internal form and updates the Auxiliary Entry List.

5. 1.7.3.2 Inputs

(1) AUXILIARY ENTRY LIST, F

BINDING LIST, F

ITEM LIST, F

RESERVED, B, 10
SRL - ACCESS, 0, 1
SRL - MODIFICATION, 0, 1
RESERVED, B, 2
ITEM TYPE, B, 6
OPTION CODE, B, 1
ITEM SIZE, I, 11

TERM LIST, F

TERM NAME, A, V
UNIT, B, 6
RESERVED, I, 18

(2) AUXILIARY ENTRY R-NO. FIELD, I, 18

(3) AUXILIARY ENTRY ITEM IMAGE LIST, F

ITEM LITERAL LIST, F

TERM LITERAL, A, V

5.1.7.3.3 Results. No outputs for the job are specified. The appropriate entries

to the Auxiliary Entry List constitute the results.

5.1.7.3.4 Directories Used. No directories are used unless ex. ernally bound.

5.1.7.3.5 Services Used

(1) Open for Rjding.

(2) Close for Reaing.

5-14

(3) Read.

((4) Open for Writing.

(5) Close for Writing.

(6) Write.

(7) Open for Updating.

(8) Close for Updating.

(9) Seek.

(10) Insert.

(11) Retriave Item

5.1.7.3.6 Jobs Used. Translation.

5. 1.7.3.7 Method of Operation. If the Auxiliary Entr, List, modifi-d by the Auxiliary

Entry R-No. Field, indicates EOF, an auxiliary entry list record is inserted. In both

cases, the Translation job is then requested an a Job Extension.

5-15

V-

I J
o CI
;- '-

z0
o

'I

IJI ii ii
o

II
jII�

hi

I

B-I6

5.1.7.4 Unit

(Job Request: UNIT (unit name field), (unit inputs), (unit outputs),
(unit R-No. field), (unit ECD);
(unit component list), (unit item image list),
(unit item list), (unit task list).

5. 1. 7.4. 1 Functional Description. A one-task entry identical to that of the Job

Description List is created in three steps by the Unit job. This consists of three files,

each of which is written by one of three sequential component jobs. The files are:

(1) Unit Component List,

(2) Unit Item List,

(3) Unit Task List.

In addition, the first component generates the Unit Item Image List for the

purpose of subsequent translation.

5.1.7.4.2 I

(1) UNIT FIELD NAME, A, V

(2) UNIT INPUTS, F

INPUT, A, V

(3) UNIT OUTPUTS, F

OUTPUT, A, V

(4) UNIT R-NO. FIELD, I, 18

(5) UNIT ECD, A, V

5.1.7.4.3 Results

(1) UNIT COMPONENT LIST, F

COMPONENT NAME, A, V
COMPONENT R-NO., I. 18
COMPONENT I/O LIST, F

6-17

TYPE, B, 3
I/O NAME, A, V
CLASS, I, 3
IiO R-NO., I, 15

(2) UNIT rrEM IMAGE LIST, F

ITEM LITERAL LIST, F

ITEM LITERAL, A, V

(3) UNIT ITEM LIST, F

CLASS, I, 3
I/O LIST, F

TYPE, B, 3
I/O NAME, A, V
R-VALUE, H, V

(4) UNIT TASK T TRT, F

TYPE, L,
TASK ID, I, 12
NO. FLOATS, I, 3
INPUT LIST, F

FORMAL NAME, A, V
CLASS, I, 3
I/O R-NO., I, 15

5. 1.7.4.4 Directories Used. No directories are used unless externally bound.

5. 1.7.4.1) Services Used.

(1) Open for Reading.

(2) Close for Reading.

(3) Read.

(4) Opew for Writing.

(5) Close for Writing.

(6) Write.

(7) Retrieve Item.

5-1I

5. 1.7.4. 6 Job Used. No Job Extenfions are used

5. 1.7.4.7 Method of Operation. The tinit jot, inkwno'rc fr,-

Job Description:

Job Name: UNIT

Job Inputs: unit name fteld, ui;ft inputs, -..'it outputs.
unit R.-No. field, unit EC.*-

Job Outputs: unit component list, unit iterri it-age Itst
unit item list, unit task list.

ob Componients:

(1) UNIT 1: unit name field, unit inputs, unit outputs.
unit component list, unit item image list.

(2) U~rf 2: unit component list, unit R-No. field.
unit item list.

(3) UNIT 3: unit ECD, unit component "List, unit task list

The internal Job Description may be represented graphically as athov

Figure 5-2. Unit I creates a component list and ai'. item image. From thil, :'a

list, Unit'2 generates an item list and Unit 3 generates a task list.

UNIT 1 NAME F1EED i-UINITI I COMPONENT P

UNIT I INPUTS UI

UNIT 1 OUTPUTS UNIT 1 ITEM ,iMAG F 1,I)

UNIT 2 COMPO0NENT LIST

UNIT 2 It-NO. FIELD

UNIT 3 ECDUNT3 -40UI3TAKLS

U NIT 3 COMPONENT LIST

Fgi5ire 5-2. Unit Job, Internal Job Description

5~-19

b.1.7.4,7.1 Unitl

Job Request: UNIT- I (unit 1 name field), (unit 1 inputs),
(unit 1 outputs);
(unit 1 component list), (unit I item image list).

5. 1.7.4.7. 1. 1 Functional Description. The Unit I Job crt.ates a one-task component

liat and ar iteia image list for that task.

5.17.74.7.1.2 Inputs

(1) UNIT 1 NAME FIELD, A, V

(2) UNIT 1 INPUTS, F

INPUT, A, V

(3) UNIT I OUTPUTS, F

GJTPUT, A,

5.1.7.4.7 1.3 Results

(1) UNIT 1 COMPONENT LI.,r, F

COMPONENT NAME, A, V
COMPONENT R-NO., I, 18
COMPONENT I/O LIST, F

TYPE, B, 3
I/O NAME, A, V
CLASS, I, 3
1/0 R-NO., 1, 15

(2) UNIT I ITEM IMAGE LIST, F

ITEM LITERAL IjST, F

ITEM LITERAL, A, V

5. 1.7.4 7. 1. 4 Directories Used. No directories are used unless externally bound.

5. 1. 7.4.7. 1. 5 Services Used

(1) Open for Reading.

(2) Close for Roding.

(3) Read.

5-20

"(4) Open for Writing.
k

(5) Ckjo for Writing.

(6) Write.

(7) Ret "ieve Item.

5.1.7.4.7.1. Jobe Used. No Job Extensions are used.

5.1.7,4.7.1.7 Metbhd of Operation. The indar N is initialize1 to zero and is used to

indicate the Nth input-outlet of the Component I/O List, Upon retrieval of the job

inputs, the job outputs are formed and written.

6-21

�6

'7-
'-4

z
O-�o -o

� z I �

I
+

2 a -
2

2 z

0 0

Ca.�ii1 -

0 r ii
�ii 31 I

.4 a U

�0 .4 .4 C
5-22

5.1.7.4.7.2 Unit 2

Job Request: UNIT-2 (unit 2 component list), (unit 2 R-No. field),
(unit 2 item list)

5. 1. 7.4.7.2. 1 Functional Description. The Unit 2 job generates an item list from a

one-task component list.

5. 1.7.4.7. 2.2 Inputs

(1) UNIT 2 COMPONENT LIST, F

COMPONENT NAME, A, V
COMPONENT R-NO., I, 18
COMPONENT I/O LIST, F

TYPE, B, 3
I/O NAME, A, V
CLASS, I, 3
1/0 R-NO., I, 15

(2) UNIT 2 R-NO. FIELD, I, 18

5.1.7.4.7.2.3 Results

C LASS, I, 3
I/O LIST, F

TYPE, B, 3
1/O NAME, A, V
R-VALUE, H, V

5. 1.7. 4. 7. 2. 4 Directories Used. No directories are used unless externally bound.

5.1.7.4.7.2. Se es Used

(1) Open for Reading.

(2) Close for Reading

(3) Read.

(4) Open for Writ.rg.

(5) Clo#e for Writing.

(6) Wri'e.

(7) Retrieve Item.

C

5-23

5. 1.7.4.7.2.6 Jobs Used. No Job Extensions are used.

5.1.7.4.7.2.7 Method of Operation. A one-task component list is read, and, from this,

an item list is. formed and written. The R-VALUE field is formed by oompounding the

W/O R-No. field with-the Unit 2 R-No. Field.

5-24

po zo

I Io

5-26

5.1.7.4.7.3 Unitt3

Job Request: UNIT-3 (unit 3 ECD), (unit 3 component list);
(unit 3 task list).

5.1.7.4.7.3.1 Functional Description. The Unit 3 Job generates a task list from a

One-Task Component List.

5.1.7.4.7.3.2 Inputs

(1) UNIT 3 ECD, A, V

(2) UNIT 3 COMPONENT LIST, F

COMPONENT NAME, A, V
COMPONENT R-NO., I, 18
COMPONENT I/O LIST, F

TYPE, B, 3
I/O NAME, A, V
CLASS, I, 3
I/O R-NO., 1, 15

5.1.7.4.7.3.3 Results

TYPE, B, 3
TASK ID, I, 12
NO. FLOATS, I, 3
INPUT LIST, F

FORMAL NAME, A, V
CLASS, I, 3
I/O R-NO., 1, 15

5.1.7.4.7.3.4 Directories Used. No directories are used unless externally bound.

5.1.7.4.7.3.5 Services Used

(1) Open for Reading.

(2) Close for Reading.

(3) Read.

(4) Cpw for Writing.

5-26

(5) Close for Writin•

(6) Write.

(7) Retrieve Item.

5•1. 7.4.7.3.6 Jobs Used. No Job Extensions are used.

5.1.7.4.7.3.7 Method of Operation A one-task component list is read. Frcm this

a task list with an ECD heading is formed and written.

52

&h

'.4

0

I

I
tojoK 'U

I V
i

'I

2'
0

0

�ji �I ¾ r i�I
III;

ii

I'

ij

�1.-, nfl' - - - --- - -- - N. -

1 -- -.

1' -

*.1 -

5.1.7.5 Translation

* Job Request: TRANSLATION (translation item image list);
(translation binding list).

5. 1. 7.5.1 Functional Description. The 1'ranslation Job translates an item image list

to a hindir,, list.

5.1.7.5.2 kp!-

TRANSLATION ITEM IMAGE LIST, F

ITEM LITERAL LIST, F

ITEM LITERAL, A, V

5.1.7.5.3 Results

TRANSLATION BINDING LIST, F

ITEM LIST, F

RESERVED, B, 10
SRL - ACCESS, 0. 1
SRL - MODIFICATION, 0, 1
RESERVED, B, 2
ITEM TYPE, B, 6
OPTION CODE, B, 1
ITEM SIZE, I, 11

TERM LiST, F

TERM NAME, A, V
UNITS, B, 6
RESERVED, I, i8

5. 1 7.5.4 Directories Used. No directories are used unless externally bound.

5.1.7.5.5 Services Used

(1) Open for Reading.

(2) Close for Reading.

(3) Read.

(4) Open for Writing.

5-29

(5) Close for Writing. (

(6) Write.

5. 1. 7. 5. 6 Jobs Used. No Job Extersions are used.

5. 1. 7.5.7 Method of Operation. An item image list is read, translated to inter.nal

form, and written as a binding list,

I-3

,�f.

S

4
ii

�EE�

I'
Ii'

4

1.q� I-!
- K2-

'I

0U

'5I

4

JL

if

ii

C
5-31

5.2 JOB DESCRIPTION,

A job description defines a new job as a sequence of existing jobs. The

r'ompcuents in the sequence are jobs from the DM-l libl-,try. They are in the library

because they were defined by a previous job description which was processed by the

Job Description iob or they were entered by a program specification which was pro-

cedned by the Program Entry Job.

To describe a Job, the user names the job and its input-output parameters,

identifies each component job, anu binds the Indirect input-output parameters of each

comi.onent job. The job description includes the following elements:

(1) Job Name

(2) Job Inputs (indirect)

(3) Job Outputs (indirect)

(4) Job Component List

The job name is the name through which the new job will be called for execution. The

,,)b inputs and outeuts arc a series of paramet - names for the bindable, indirect,

input-output paramneters for the new job. The job components list contains the name

ard binding specification for each job.

The int. nputs and outputs are user-assigned names for component inputs

and outputs which are not to be made specific by the job description. They are dummy

names which are used in the components list to show the relationship between the inputs

and outputs of t0a new job and th• inputs and cutputs of the component jobs. If the job

dascilption makes all componn•nt inputs and outputs specific, there are no job inputs

or outputs.

The components list contains an entry for each component job in the sequence

in which they are to be executed in the new job. It gives the name of the component and

binds each of the component's ii. Arect input-output parameters.

Each component input parameter is bound by the assignment of one of the

following:

5-32

(1) An external paraameter. This is a literal value to be used
as the value fa. the compnnent input parameter.

(2) A permanenw parameter. This is the name of an item in the
data base. The binding epecification may include a
condition clause and a reformat clause to direct the system
to select a subset ox the named item and to interpret the
selected subset in a format which differs from its format
in the data base. The resulting ittm is to be used as the
input to the component each time the new job is run.

(3) An inter-job parameter. This is the name of an item in
the work area. The binding specification is the same as
that for a permanent parameter.

(4) An indirect parameter. The component input parameter
is itself ?r, indirect parameter which must be bound
whenever the component is called as a job or used in a
job description. The first three parameter types which
may be bound to the component input paismete., make it
specific; i. e., they specify an item in the data pool as
the source of the input data. (A literal is an item in the
data pool when the job is executed.) However, the new job
might be more flexible if the binding for some of the
component inputs can be deferred until the job is executed.
This is accomplished by binding the component input para-
meter to an indirect input parameter of the new job. The
indirect parameter is assigned a name in the list of job
inputs and this name is used to bind the inputs of some
of the components. When the new job is executed, its
indirect input parameter is made specific by the user.
The associated component inputs are made specific at
the same time.

(5) A direct parameter. This is a name used to identify an
output of a previous component in the component list.
It is not specific because there is no node in the data pool
corresponding to it. When the new jGo is executed, the
system will assign a node in the scratch area (an intra-
job parameter) to accept the output of the earlier
component so that It may be used as the input to later
components. The output of the earlier component may
also be an output of the job. In this case, the name of
the job output is used, and the system uses the node
bound to the job output as the sour 'e)f the input data
for components whose inputs were bound this way. A
condition clause and a reformat clause may be used to
specify a subset of the source item and a change in its
structure.

5-33

Each component output parameter is bound by the assignment oflie of the

following:

(1) A permanent prlameter. This is the name of an item
in the data base and a-condition, if necessary. It defines
the unique node in the data base which is to receive
the output item from the component.

(2) An inter-job parameter. This is the name of an item
in the work area and a condition, if necessary. It
defines a unique node in the work area which is to
receive the output from the component.

(3) An indirect parameter. When the binding specification
for a coiponent output parameter is to be deferred
until the new job is executed, the component output
parameter is bound to an output of the new job. The
user assigns a name in the job output list and uses this
name to bind the component output.

(4) A direct parameter. This is a name used to specify
that the eomponent output is to be used as an Input
to components which occur later in the components
list.

The choices for binding the indirect input-output parameters may be

summarized as follows:

11) Specific data-base and work-area items may be bound
to some of the input and output parameters of the
components.

(2) Some ot the components inputs are connected to out-
puts of previous components by assigning a name to
the output and using that name for the inputs.

(3) With either (1) or (2), a conlition clause and a re-
format clause may be used to spec;.fy a subset of the
source item and a change in its structure when the
source item is used as an input. A condition may be
used with (1) to define a unique node if the named item
is embedded in a file.

(4) The specific binding of component input and output
parameters may be deferred until the new job is
executed by assigning a name in the job input or job
output list and associating the component input or
output with th n4 q'ame.

5-34

The job request image for the Job Description job is as follows:

Job Request: JOB DESCRIPTION (job name), (job inputs), (job outputs),
(Job components).

5.2.1 Functional Description

In general, jobs consist of many component jobs, ordered into a task list.

Such jobs are entered into the system via the Job Description job. It is assumed that

all specified component jobs exist within the system at the time of this job description.

A description of the job must be given, which consists of the following items:

(I I Job name,

(2) Job inputs,

(3) Job outputs,

(4) Job components.

The job name is the name by which the job is known to the system. Job inputs

and job outputs consist of the sum total of all job component inputs and outputs which

the user desires as generalized input-output parameters of the new job. All remaining

job component inputs and outputs must be bound within the job or to a specific item of

the data pool. As such, all bound input-output parameters are no longer considered

as job inputs or job outputs, but are known only internally. Job oomponents consist of

any number of previously definod jobs and are specified in the desired order of

execution and possibly bound through input-output parameters. Each job component is

identified by its job name and some input -u tput parameter for each job input and job

output.

Four clases of input-output parameters are possible. These are:

(1) Job input-output,

(2) Intermediate input-output (Intra-Job),

(3) Internal input-output (TET),

(4) Literal input.

5-35

A,-.

Input-output par.iu,-ters u ip-tms e d Pvtensively in Volume I, Section VII. C

Jobs a:e maintained v A-" the y tbhoigh appropraiaL entries in tie

system directories. These inc ide-

(i'D Job Statement,

(2) Job Descriptir. rAst.

The job name is entered into the -T ' Name List of the Job Statement. The

job inputs, job outputs and job components are identified and entered into the Job

Description List.

The major items of the Job Statement include the Job Null List, the Job

Lkast R-No., and the Job Name List. All missing R-nurabers of the Job Description

List are listed within the Job Null List. In this manner, new jobs cause entries into

vacant slots of the description list. A last R-number is provided should missing

numbers be unavailable. The Job Name List is an alphabetically ordered list of all

job names within the system along with a reference to the corresponding entry of the

Job Description List.

The major items of the Job Description List include a job item list, a static

task list, a job components list, and a usage list for every job within the system. A

job item list is a list of all inputs and ,.utputs to all tasks of a job grouped into the four

classes of input-output parameters. A static task list is a skeletal copy of the idenLical

list of the Request Processor where the input-output IPC's are replaced by references

to input-output items of the corresponding job item list. A job component list is P list

nf all job components as they were entered into the system to form a particular job.

Finally, a usage list Is a list of job names, identifying all those jobs in which a

psrticular job is used as a component.

5.2.2 I

(1) JOB NAME, A, V

(2) JOB INPUTS, F
INPUT, A, V

C5
5-36 i

V
(3) JOB OUTPUTS, F

OUTPUT, A, V

(4) JOB COMPONENTS, F

5.2.3 Results

No outputs for this job are specified. The appropriate entries to the

directories constitute the results.

5.2.4 Directories Used

(1) Job Statement.

(2) Job Description List.

5.2.5 Services Used

(1) Open for Reading.

(2) Close for Reading.

(3) Seek.

(4) Read.

(5) Open for Writing.

(6) Close for Writing,

(7) Write.

(8) Open for Updating.

(9) Close for Updating.

(10) Replace.

(11) Insait.

(12) Delete.

(13) Retrieve Item.

(14) Insert Data,

(6-S7
+*

I .. _ ._

5.2.6 Jobs Used (
Binding

5.2.7 Method of Operation

The Job Description Job is known to the system by the following Job Description:

Job Name: JOB-DESCRIPTION

Job Inputs: job name, job inputs, job outputs, job components.

Job Outputs: none specified.

Job Components:

(1) NAME: job name, JOB STATEMENT;
job R-No. Field.

(2) ENTRY: JOB DESCRIPTION LIST, job R-No. field,
job inputs, job outputs, job components,
JOB STATEMENT.

(3) CATALOG: job name, JOB DESCRIPTION LIST,
job R-No. field.

The internal Job Description may be represented graphically as shown in

Figure 5-3.

NAME FIELD
NAME NAME R-NO. FIELD

NAME STATEMENT '_'_'_"_

ENTRY LIST
ENTRY R-NO. FIELD "
ENTRY INPUTS ENTRY
ENTRY OUTPUTS ET
ENTRY COMPONENTS
ENTRY STATEMENT --

CATALOG NAME FIELD
CATALOG LIST - - CATALOG
CATALOG R-NO. FIELD

_ _ __

Figure 5-3. Job Dascrlptlon Job, Internal Job Description

5-38

The job name is entered into the Job Name List of the Job Statement and the

corresponding R-number is written. With the job inputs (the job name is no longer

necessary) and this R-nun-,ter, the Entry Job updates the Job Description List. With

the job name and the R-number, the Catalog job updates the appropriate usage lists

of the Job Description List.

-3

S~5-39

4P!- -.--

5.2.7. 1 Entry

Job Request: ENTRY (entry list), (entry R-No. field), (entry inputs),
(entry outputs), (entry components), (entry statement).

5.2.7.1. 1 Functional Description. With the job Inputs the Entry job updates the

Entry List.

5.2.7.1.2 Inputs

(1) ENTRY LIST, F

ED, A, V
ITEM LIST, F

CLASS, I, 3
I/O LIST, F

TYPE, B, 3
I/O NAME, A, V
R-VALUE, H, V

STATIC TASK LIST, F

TYPE, B. 3
TASK ID, I, 12
NO. FLOATS, I, 3
INPUT LIST, F

FORMAL NAME, A, V
CLASS, 1, 3
L/O R-NO., 1, 15

COMPONENT LIST, F

COMPONENT NAME, A, V
COMPONENT R-NO., I, 18
COMPONENT I/O LIST, F

TYPE, B, 3
I/O NAME, A, V
CLASS, I, 3
/O R-NO., I, 15

USAGE LIST, F

NAME, A, V

5-4
5-4

(2) ENTRY R-NO. FIELD, I, 18

(3) ENTRY INPUTS, I
INPUT, A, V

(4) ENTRY OUTPUTS, F
OUTPUT, A, V

(5) ENTRY COMPONENTS, F
COMPONENT, A, V

(6) ENTRY STATEMENT, S, 3
NULL LIST, F

NULL R-NO., I, 18
LAST R-NO., 1, 18
NAME LIST, F, ORDERED (1)

NAME, A, V.
NAME R-NO.-, I, 18

5. 2.7.1.3 Results. No outputs for the job are specified. The appropriate entries to

the Entry List constitute the results.

5. 2.7, 1.4 U0recteries Used. No directories are used unless externally bound.

5.2.7.1.5 Services Used

(1) Open for Reading.

(21) Clse for Reading.

(3) Seek.

(4) Read.

(5) Open for Writing.

(6) Close for Writing.

(7) Write.

(8) Open for Updating.

(9) Close for Updating.

(10) Replace.

(11) Insert.

(12) Retrieve Item.

5(

•: 5-41

5. 2. 7. 1.6 Jobis Used. Binding.

5.2.7. 1.7 Method of Operation. If the Entry List, modified by the Ettry R-No. Field,

indicates EOF, an entry list record is inserted. In both cwes the Binding job is then

requestL1. as a Job Extension.

I ,
8.-42

, IC A

* j

IQI

tt

6-43

5.2.7.2 CAg

Job Request: CATALOC (catalognamefiehd), (c.Wilog list), (catalogR-No. field).

5.2.7.2.1 Functio,,alf dcription. With the ?atalog Name Field and the Catalog

t-No. Field, the Catalog job updateq the appropriate usage lim& of the Cataog List.

5.2.7.2.2 Inputs

(1) CATALOG NAMF FIELD, A, V

(2) CATALOG LIST, F

ID, A, V
ITFM LIST, F

C LA-"S. i, 3
I/O LIST, F

TYPE, B, 3
I/O NAME, A, V
R-VALJE, H, V

STATIC TASK LIST, F

TYPE, B, 3
TASK ID, I, 12
NO. FLOATS, 1, 3
LNPUT LIST. F

FORMAL NAME, A, V
CLASS, I, 3
I/O R-NO., I, 15

COMPONENT LIST, F

COMPONENT NAME, A, V
COMPONENT R-NO 1, 18
COMPONENT I/0 i-.ST, F

TYPE, Zn
ý/O NAME, A, V
CLASS, 1, 3
/O R-NO., 1, 15

USAGE LIKI, F

NAME, A, V

(3) CATAL(OG R-NO. FIELD, 1, 18

5-44

6.2.7.2.3 iesults. No outputs for the Job are specified. The appropriate entries to

the Catalog List constitute the results.

5.2.7. 2.4 Directories Used. No directories are used unless externally bound.

5.2.7.2.5 Services Used

(1) Open for Reading.

(2) Close for Reading.

(3) Seek.

(4) Read.

(5) Retrieve Item.

(6) Insert Data.

5. 2.7.2. 6 Jobs Used. No Job Extensions are used.

5.2.7.2.7 Method of Operation. The Component List of the Cataog List, modified

by the Catalog R-No. Field, is Identified. Each Component R-No. is read and the

Catalog Name Field is added to the Usage List, modified by this R-numLer.

5-45

Im I

Im

(m

5 .. 44

5.2.7.3 Binding

(2 Job Request: BINDING (bind inputs-opt.), (bind uutputs-opt.),
(bind components), (bind statement), (bind list);
(bind component list), (bind item list), (bind task list).

5. 2. 7.3. 1 Functional Description. An entry identical to that of the Job Description

List is create:' in three steps by the Binding job. This consists of three files, each

of which is written by one of three sequential component jobs. The files are:

(ij Bind Component List,

(2) Bind Item List,

(3) Bind Task List.

The Binding job relates all input-output parameters to four general classes.

These are:

(1) Indirect Input-Output,

(2) Direct Input-Output,

(3) Internal Input-Output,

(4) External Input.

Input-output parameters are discussed extensively in Volume I, Section VII.

5.2.7.3.2 Inputs

(1) BIND INPUTS, F
INPUT, A, V

(2) BIND OUTPUTS, F
OUTPUT, A, V

(3) BIND COMPONENTS, F
COMPONENT, A, V

(4) BINDSTATEMENTS, S, 3

NULL LIST, F
NULL n-NO., I. 1z

LAST R--NO.. I, I
NAME I.J4iT, F; '•2w •Wi)

* -v7

4!

(5) BIND LIST, F

ID, A,V C
ITEM LIST, F

CLASS, I, 3
/IO LIST, F

TYPE, B, 3
I/O NAME, A, V
R-VALUE, H, V

STATIC TASK LIST, F

TYPE, B, 3
TASK ID, I, 12
NO. FLOATS, I, 3
INPUT LIST, F

FORMAL NAME, A, V
CLASS, I, 3
I/O R-NO., 1, 15

COMPONENT LIST, F

COMPONENT NAME, A, V
COM.ONENT R-NO., I, 18
COMPONENT I/O LIST, F

TYPE, 3, 3
I/O NAME, A, V
CLASS, I, 3
I/O R-NO., I, 15

USAGE LIST, F

NAME, A, V

5.2.7.3.3 Results

(1) BIND COMPONENT LIST, F

COMPONENT NAME, A, V
COMPONENT R-NO., I, 18
COMPONENT I/O LIST, F

TYPE, B, 3
I/O NAME, A, V
CLASS, I, 3
I/O R-NO., I, 15

C
S~~5-48 .,

(?, BIND ITEM L16r,

C LASS, 1, 3
I/O LIST, F"

TYPE, B, 3
I/O NAME, A. V
R-VALUE, H, V

(3) BIND TASK LIST, F

TYPE, B, 3
TASK ID, !, 12
NO. FLOATS, 1, 3
INPUT LIST, F

FORMAL NAME, A, V
CLASS, I, 3
I/O R-NO., I, 15

5. 2.7.3.4 Directories Used. No directories are used unless externally bound.

5.2.7.3.5 Services Used

(1) Open for Reading.

(2) Close for Reading.

(3) Seek.

(4) Read.

(5) Open for Writing.

(6) Close for Writing.

(7) W rite.

(8) Opea for Updating.

(9) Close for Updating.

(10) Replace.

5-49

5.2.7.3.6 Jobs Used. No Job Extensions are used. C

5. 2.7.3. 7 Method of Operation. The Binding job is known to the system by the following

Job Description:

Job Name: BINDING

Job Inputs: bind inputs (optional), bind outputs (optional), bind components,
bind statement, bind list.

Job Outputs: bind component list, bind item list, bind task list.

The internal Job Description may be represented graphically as shown in

Figure 5-4. Bind 1 creates the Component List. From this, Bind 2 generates the Item

List, and Bind 3 generates the Task List.

BIND 1 INPUTS (OPTIONAL)
BIND 1 OUTPUTS (OPTIONAL) BIND 1 BIND 1 COMPONENT LIST
BIND I COMPONENTS
BIND 1 STATEMENT ---

BIND 2 LIST -

BIND 2 INTERMEDIATE LIST--- BIND 2 BIND 2 ITEM LIST

BIND 3 LIST
BIND 3 BIND 3 TAFl(LIST

BIND 3 INTERMEDIATE LIST--

Figure 5-4. Binding Job, Internal Job Description

5-50

r:

5.2.7.3.7.1 Bind 1

C Job Request: BIND-1 (bind 1 inputs), (bind 1 outputs), (bind 1 components),
(bind 1 statement);
(bind I component list).

5.2.7.3.7.1.1 Functional Description. The Bind 1 job creates a component list.

5.2.7.3.7.1.2 Inputs

(1) BIND I INPUTS, F
INPUT, A, V

(2) BIND 1 OUTPUTS, F
OUTPUT, A, V

(3) BIND 1 COMPONENTS, F
COMPONENT, A, V

(4) BIND 1 STATEMENT, S, 3
NULL LIST. F

NULL R-NO., I, 18
LAST R-NO., I, 18
NAME LIST, F, ORDERED (1)

NAME, A, V
NAME R-NO., I, 18

5.2.7.3.7.1.3 Results

BIND 1 COMPONENT LIST, F

COMPONENT NAME, A, V
COMPONENT R-NO., 1, 18
COMP1ONENT L/O LIST, F

TYPE, B, 3
I/O NAME, A, V
C LASS, 1, 3
I/O R-NO., 1, 15

5. 2.7.3.7. 1.4 Directories Used. No directories are used unless externally bound.

5.2.7.3.7.1.5 Services Used.

(1) Open for Reading.

(2) Close for Reading.

IC

(3) Seek. C
(4) Read.

(5) Open for Writing.

(6) Close f,,,r Writing.

(7) Write.

5.2.7.3.7. 1.6 Jobs Used. No Job Extensions are used.

5.2.7.3.7. 1.7 Method of Operation. The Component List is formed and written in the

order in which the job components are read. With each component, inputs precede

outputs. In both cases, the following identifications are made:

(1) If component input-output equals any Bind I input-output,
Class = 1 (Inairect).

(2) If component input-output is marked (TET), Class = 3 (Internal).

(3) If component input is external, Class = 4 (External).

(4) In all ot, ýrr •asev, Class = 2 (Direct).

5-52

S

(

fl'!

�Ijt I..

Ij�
m

�ij.
I I�

ii'

S

�iI
j

Ii I

U

g�j I
II ii!

4-

(I

S. 5-58

01*1

.2732

L, z f u z - z

z 2 r

-6

2., 7. 3.7.2 Bind -2

*I.o P .-equest: fIN --2 {bind 2 list), (bind i intermediatv- list),
(bind 2 item list).

5. 2.7 3.7, 2. 1 Functional Description- The Pin~d 2 iob generates an item list.

5. 2, 7. 3. 77.2.2 Inputs

(1) BIND 2 LIST, F

ID, A, V
ITEM LIST, F

CLASS. 1, 3
I/O LIST, F

TYIE, B, 3
i!O NAME, A, V
R-VALUE, H, V

STATIC TASK LIST, F

TYPE, B, 2
TASK ID, I, 12
NO. FLOATS, 1, 3
INPUT LIST: F

FORIVLML NAME, A, V
CLASS, I, 3
I/O R-NO., I, 15

COMPONENT LIST, F

COMPONENT NAME, A, V
COMPONENT R-NO., 1, 18
COMPONENT I/O LIST, F

TYPE, B, 3
I/O NAME, A, V
CLASS, I, 3
I/O R-NO., I, 15

USAGE LISn, F

NAME, A, V

5-56

(2) k1NI) 2 INTEA; ! I-'.ATEL !A' "

C()MPONENT N4AME, A, V
r COMPONENT R-N-M.. 1, 18

(COMPON;,1 NT I/O LIST, F

TYPE, B, 3
I/O NAME, A, V
CLASS, 1. 3
TJI/O h-NO_, 1, 15

5,2.7.3.7,2.3 Results

BiNDi, 2 1ITEM LIST, F

CLASS, 1, 3
I/0 LIST, F

TYPF, B, 3
I/O NA ME, A, V
R-VALUE, H, V

5.2.7. 3.7.2.4 Directories Used. No directoriea are used uniess externally bound.

5. 2. 7.: 7 9 S Services Used

(1) Open for Reading.

(2) Close for Reading.

(3) Seek.

(4) Read.

(5) Open for Writing.

(6) Close for Writing.

(7) Write.

(8) Open for Updating.

(9) Close for Updating.

(10) Replace.

5.2.7.3.7. 2.6 Jobs Used. No .lob Extenionas are uicd.

I

.3Meth d o.;,',f J1 ration, Indey M. is initializii to zero. It fl•(!icates the

Mth c!ast, Lndie,-- Nfl), N(2), N,13), rid N(41 are likewise initialized to zero. They

pecifv the tinput-output parameter of one of four classes. Thus, N(M) specifies

the N h inpult-output parameter of the Mth clas.

The entire Intermediate List is read for ea6. Mth class. The following actions

are taken for each component of this list.

(1) Assemble all previous input-output parameters of the Mth class
from the Item list of the component and in each case increment
N(M).

(2' Add all unique input-output parameters of the Mth class from the

Component I/O List of the Intermediate List Recor3 and in each
case increment N(M),

!I

5-58j

'11)1

Az W
C ±u

5-5

I4
I (z

orI

C41

5-60

094

z z

41 13

4;4

5-61

2. 7.3 Vi3ifld3

Job Pequest: BIND-3 (bind 3 list), (bind 3 intermediate list):
(bind 3 tas;k list).

5. 2. 7.3.7.3. 1 The Bind 3 job creates a component list.

5.2.7.3.7.3.2 Inputs

(1) BIND 3 LIST, F

ID, A, V

ITEM LIST, F

CLASS, I, 3
I/O LIST, F

TYPE, B, 31/0 NAME, A, V

R-VALUE, H, V

STATIC TASK LIST, F

TYPE, B, 3

-IAK iw. 1, 12
NO. FLOATS, I, 3
INPUT LIST, F

FORMAL NAME, A, V
CLASS, 1, 3
I/O R-NO., I, 15

COMPONENT LIST, F

COMPONENT NAME, A, V
COMPONENT R-NO., 1, 18
COMPONENT 1/O LIST, F

TYPE, B, 3
I/O NAME, A, V
CLASS, 1, 3
I/O R-NO., 1, 15

USAGE LIST, F

NAME, A, V

5-62

F__

(2) BIND 3 INTERMEDIATE LIST, F

SCOMPONENT NAME, A. --
S~COMPONENT R-NO., 1, 18

COMPONENT I/O LIST, F

TYPE, B, 3
I/O NAME, A, V

CLASS, 1 3
I/O R-NO., 1. 15

5,2.7.3.7.3.3 Results

BIND 3 TASK LIST, F

TYPE, B, 3
TASK ID, 1. 12
NO. FLOATS, 1, 3
INPUT LIST, F

FORMAL NAME, A, V
CLASS, 1, 3
I/OR-NO., I, 15

5. 2.7.3.7.3.4 Directories Used. No directories arie used uriless externally bound.

5.2.7.3 7.3.5 Services Used

(1) Open for ftealaXg.

(2) Close for Reading.

(3) Sýeek.

(4) Read.

(5) Open for Writing.

(6) Close for Writing.

(7) Write.

5.2.7.3.7.3.6 Jobs Used. No Job Lxtensions are used.

5.2.7.3.7.3.7 Method of Operation. Indices N(I), N(2), N(3), and N(4) are initialized

to zero. Th,-y specify the Nth input.-output parameter of one of four clasaes.

5
5-63

The task lists of all comperenta of the -itermediate List. are assembied
into one task list, Each sequential input-output pararaeter is referenced to a hypo-

thetical corresponding item list And index N (Componcrt Class) is incremented.

5-64

4:-4

0 I
L- I -=

m6

56

zzz~t

ttft

(I ii

) U

5--

(©

y~ cl

"JON

-- - !

Z Z

14

iIA

5-6

0 •-

5.3 JOB AND PROGRAM DELETION

Jobs and, 'ierefore, programs may be deleted from the job description

library by the Ji Deletion job. The deletion may be accompanied by a display of the

job descriptlon so that the user may scan the usage list to determine wnich higher

level jobs are affected by the deletion. The disBlay may not bt recpqired because the

deletion is frequently made to accommodate the entry of an updated version of the job.

If an updated version involveF no changes in the job's indirect input-output parameters,

the change can have no effect on higher level jobs which use the changed job as a com-

ponent.

The job request image for the Job Deletion job is as follows:

Job Request: JOB DELETION (job name).

5.3.1 Functional Description

Job Descriptions may be deleted from the system by the Job Deletion Job.

Should the job be a terminal or one-task job, the corresponding Program Description

would also be deleted.

5.3.2 Inputs

JOB NAME, A, V

5.3.3 Results

No outputs for the job are specified. The deletions to the directories consti-

tute the results.

5,3.4 Directories Used

(1) Program Statement.

(2) Program Description List.

(3) Job Statement.

(4) Job Description List.

C 5

5-68

5. 3 5 Services Used

(1) COpen for Writing.

(2) Close for Writing.

(3) write.

(4) Open for Updating.

(5) Close for Updating.

(6) Seek.

(7) Read.

(8) Replace.

(9) Delete.

(10) Retrieve Item.

(11) Insert Data.

5.J.5 • Jobs Used

Amxfliar; Deletion.

5. 3.7 Method of Operation

The Job Deletion job is entered into the system by the following Job Description:

Job Name: JOB-DELETION

Jc'N Inputs: job namý;

job Outputs: none specified

Job Components:

(1' DELETE-NAME: job name, JOB STATEMENT;
job R-No. field.

(2) DELETE: JOB DESCRIPTION LIST; job R-No. field,
job name, PROGRAM STATEMENT,
PROGRAM DESCRIPTION LIST.

C
5-69

I

The internal Job Description may be represented graphically as shown in

Figure 5-5.

DELETE NAME FIELD DELETE
DEET.AM]IEDNAME•]- DELETE NAME R-NO. FIELD

DELETE NAME FIELD -NA__---

DELETE LIST

DELETE R-NO. FIELD

DELETE AUXILIARY FIELD DELETE

DELETE AUXILIARY STATEMENT-----

DELETE AUXILIARY LIST --"

Figure 5-5. Job Deletion Job, Internal Job Description

Delete Name deletes the job name from the Job Name List of the Job Statement. Delete

deletes the specified record from the Job Description List and, if the job is a one-task

job, it requests a Job Extension to the Auxiliary Deletion Job.

r5-70

5.3.7.1 Delete Name

S Job Request: DELETE-NAME (delete name field), (delete name statement);
(delete name R-No. field).

5.3.7. 1. 1 Functional Description. This job updates the Delete Name Statement by

deleting Delete Name Field from the Name List. It likewise writes the corresponding

R-number field.

5.3.7.1.2 Inputs

(I) DELETE NAME FIELD, A, V

(2) DELETE NAME STATEMENT, S, 3

NULL LIST, F

NULL R-NO., I, 18

LAST R-NO., I, 18
NAME LIST, F, ORDERED (1)

NAME, A, V
NAME R-NO., I, 18

5.3.7.1.3 Output

DELETE NAME R-NO. FIELD, I, 18

5.3.7. 1.4 Directories Used. No directories are used unless externaily bound.

5.3.7. 1.5 Services Used

(1) Open for Writing.

(2) Close for Writing.

(3) Write.

(4) Open for Updating.

(5) Close for Updating.

(6) Seek.

[5-71IC

(7) Read.

(8) Delete.

(9) Retrieve Item.

(10) Insert Data.

5.3. 7. 1. 6 Job Used. No Job Extensions are used.

5.3. 7. 1.7 Method of Operation. After the Delete Name Field is read, this name

is deleted from the Name List of the Delete Name Statement. The corresponding

R-number is inserted into the Null List and is also written.

5
S~5-72

ZI

It Z

5-7

5.3.7.2 Delete (I

Job hequest: DELETE (delete list), (delete R-No. field),
(delete auxiliary field), (delete auxiliary statement),
(delete auxiliary list).

5.3.7.2.1 Functional Description. This job updates the Delete List by deleting the

specified record from the Delete List. Shuald this record constitute a terminal item,

the corresponding record of the Delete Auxiliary List would also be deleted.

5.3.7.2.2 Inputs

(1) DELETE LIST, F

ID, A, V
ITEM LIST, F

CLASS, I, 3
I/O LIST, F

TYPE, B, 3
I/O NAME, A, V
R-VALUE, H, V

STATIC TASK LIST, F

TYPE, B, 3
TASK ID, 1, 12
NO. FLOATS, 1, 3
INPUT LIST, F

FORMAL NAME, A, V
CLASS, 1, 3
I/O R-NO., I, 15

COMPONENT LIST, F

COMPONENT NAME, A, V
COMPONENT R-NO., 1, 18
COMPONENT I/O LIST, F

TYPE, B, 3
I/O NAME, A, V
CLASS, I, 3
I/OR-NO., I, 15

USAGE L"T, F

NAME. A, V

0
•, 5-74

r1

(2) DELETE R-NO. FIELD, I, 18

r (3) DELETE AUXILIARY FIELD, A, V

(4) DELETE AUXILIARY STATEMENT, S, 3

NULL LIST, F

NULL R-NO., I, 18

LAST LIST, F, ORDERED (1)

NAME, A, V
NAME D-NO., I, 18

(5) DELETE AUXILIARY LIST, F

BINDING LIST, F

ITEM LJ8T, F

RESERVED, B, 10
SRL - ACCESS, 0, 1
SRL - MODIFICkrION, 0, 1
RESERVED. B, 2
ITEM TYPE, B, 6
OPTION CODE, B, 1
ITEM SIZE, I, II

TERM LIST, F

TERM NAME, A, V
UNITS, B, 6
RESERVED, I, 18

5.3. 7.2.3 Results. No outputs for the job are specified. The deletions to the Delete

List aad the Deleýe Auxiliary List constitute the results.

5.3.7. 2.4 Directories Used. No directories are used unless externally bound.

5, 3, 7.2.5 Services Used

(1) Open 1br Writing.

(2) Close for Writing.

(3) Write.

5-75

$}

(4) Open for Updating.

(5) Close for Updating.

(6) Seek.

(7) Read.

(8) Replace.

(9) Delete.

(10) Retrieve Item.

(11) Insert Data.

5.3. 7. 2. 6 Jobs Used. Auxiliary Deletion.

5. 3. 7. 2. 7 Method of Operation. The subsumed files of the specified record of Delete
List are replaced by null items. If this record constitutes a terminal item, a Job
Extension to the Auxiliary Deletion job is requested.

0
5-716

.01o3 I IY
wlý

iti

411

1l35-7.

5.3.7. o AilDfary Deletion

Job Request: AUXILIARY-DELETION (auxiliary deletion held),
(atxiliary deletion statement),
(auxiliary deletion list)

5.3.7.3.1 Fvnctional Description. This job updates both the Auxiliary Deletion

Statement and the Auxiliary Deletion List by deleting the Auxiliary Deletion Field

from the Name List and I- ,eing the specified record from the Auxiliary Deletion List.

5.3.7.3.2 Inputs

(1) AUXILIARY DELETION FELD, A, V

(2) AUXILIARY DELETION STATEMENT, S, 3

NULL LIST, F

NULL R-NO., I, 18

LAST R-N6., I, 18
NAME LIST, F, ORDERED (1)

NAME, A, V
'NAME R-NO., J. 18

(3) AUXILIARY DEILETION LIST, F

BINDING LIST, F

iTEM LIST, F

RESERVED, B, 10 .
SRL - ACCESS. 0, 1
RF9ERVED, B, 2

ITEM TYPE, B, 6
OPTIOT CODE, B, I
IMEM STZE 1, I1

TEAM LIST, F

TEM NAME, A, V
UN.TS, B, 6
RE.'3FRVEF1, 1, 18

5-78

i

(5.3.7.3.3 Resulte. No outputs for the job are specified. The deletions from the

Auxiliary Deletion Statement and the Auxiliary Deletion List constitute the results.

5.3.7.3.4 Directories Used. No directories are used unless externally bound.

5.3.7. 3. 5 Services Usei

(1) Open for Writing.

(2) Close for Writing.

(3) Write.

(4) Open for Updating.

(5) Close for Updating.

(6) Seek.

(7) Read,

(8) Replace.

(9) Delete.

(10) Retrieve Item.

(11) Insert Data.

5. 3. 7. 3. 6 Jobs Used. No Job Extensions are used.

5. 3. 7. 3. 7 Method of Operation. The Auxiliary Deletion job is entered into the system

by, the following Job Description:

Job Name: AUXILIARY-DELETION

Job Inputs: auxiliary deletion field, auxiliary deletion statement,
auxiliary deletion list.

Job Outputs: none specified.

Job Components:

(1) DELETE-NAME: auxiliary deletion field, auxiliary deletion statement;
auxiliary deletion R-No. field.

(2) AUXILIARY-DELETE. auxiliary deletion list,
auxiliary deletion R-No. field.

5-79

The internal Job Description may be represented graphically as shown in

Figure 5-6. 0

DELETE NAME FIELD-

SDELETE DELETE NAME R-NO. FIELD
DELETE NAME STATEMENT NAME

AUXILIARY DELETE LIST

AUXILIARY DELETE R-NO. FIELD DELETE

Figure 5-6. Auxiliary Deletion Job, Internal Job Description

Delete Name deletes Delete Name Field from the Name List of the Delete
Name Statement. Auxiliary Delete deletes the specified record from the Auxiliary

Delete List.

5-80

S.A

5.3.7.3.7. 1 Auxiliary Delete

SJob Request: AUXILIARY-DELETE (auxiliary delete list),
(auxiliary delete R-No. field).

5.3.7.3,7. 1. i Functional Description. This job updates the Auxiliary Delete List by

deleting the specified record from that list.

5.3.7.3.7. 1. 2 Inputs

(I) AUXILIARY DELETE LIST, F

BINDING LIDT, F

ITEM LIST, F

RESERVED, B, 10
SRL - ACCESS, 0, 1
SRL - MODIFICATION, 0, 1
RESERVED, B, 2
ITEM TYPE, B, 6
OPTION CODE, B, 1
ITEM SIZE, I, 11

TERM LIST, F

TERM NAME, A, V
UNITS, B, 6
RESERVED, I, 18

(2) AUXILIARY DELETE R-NO., I, 18

5.3.7.3.7.1.3 Results. No outputs for this job are specified. The deletions to the

Auxiliary Delete List constitute the results.

5. 3.7.3.7. 1.4 Directories Used. No directories are used unleas externally bound.

5.3.7.3.7. 1.5 Services Used

(1) Open for Updating.

(2) Close for Upddting.

(3) Seek.

(4) Replace.

(5) Retrieve Item.

5-81

5.3.7.3.7.1.6 Jobz Used. No Job Extensions are used.

5.3.7.3.7.1.7 Method of Operation. The subsumed file of the specified record of the

Auxdliary Delete List is replaced by a null item.

II

C I;
ii

4

ii

hi]
IIlbS

1 4

5-83 9
I

/

5.4 DISPLAY JOB DESCRIPTION

The job description of any job in the library rniay be displayed through use

of the Display Job Description lob- The entire description or a part of it may be dis-

played. This gives the user the means of uncovering the descriptive information he

might need to execute the job or to use it as a component in another job.

The job request Image for the Display Job Description job is as follows:

Job Request: DISPLAY-JOB-DESCRIPTION (display job C', 3cription name),
(display job description format).

5.4.1 Functional Description

Any Job Description of any job within the system may be displayed either in

part or in !ts entirety. The optional format sentence provides the user with flexibility

in his specification of display characteristics. This format specification is identical

to that of the Display job (Section VII, Utility Jobs).

5.4.2 Inputs

(1) DISPLAY JOB DESCRIPTION NAME, A, V

(2) DISPLAY JOB DESCRIPTION FORMAK, A, V

5.4.3 Results

No outputs for this job are specified. The display constitutes the results.

5.4.4 Directories Used

(1) Job Statement.

(2) Job Detcription List.

5.4.5 Services Used

(1) Open for Reading.

(2) Close for Reading.

(3) Seek.

& -84

(4) Read.

(5) Open for Writing.

(6) Close for Writing.

(7) Write.

(9) Retrieve Item.

5.4.6 Jobs Used

Display (Section VII, Utility Jobs)

..4.7 Method 4u Operation

The Display Job Description job is entered into the system by the following

one-component Job Description:

Job Name: DISPLAY-JOB-DESCRIPTION

Job Inputs: display job description name, display job description format.

Job Outputs: none specifted.

Job Components: DISPLAY JD: display jd name,
JOB STATEMENT; JOB DESCRIPTION LIST,
display jd format; display jd statement.

The job name is read and the specified record of the Job Description List

is initialized. Zach job input and job output is read and written. From this and the

corresponding component list, the following item is formed and written:

DISPLAY J. I. STATEMENT, 8, 5

NAME, A, V
ID, A,V
INPUT LIST, F

I/O NAME, A, V

OUTPUT LIST, F

V/O NAME, A, V

COMPONENT LIET, F

j 5-85

COMPONENT NAME, A, V
COMPONENT I/O LIST, F C,

TYPE SYMBOL, A, V
CLASS NAME, A, V
I/O NAME, A, V

A Job Extension is requested to execute the Display job with the above ftem.

I

- 01
I !

5-86 -.(:!,

. + +" ;-V

.11

Jill!

lot(

91

5K8

3. � 14.
3'

A�d�
S I

"g ,�

a £
* A

1�a -�
I' �3 U

4
-� � 2 S�

a

1.11 - __ �4 ;� :$
N�j 1

� 4
_ � I

� -�

I
U 2 1.i .i

0 I�I
'S 11

iii 11 4P
4

�

1119 1' �� j

'I

I __ �1
/ : �

SECTION VI. DATA POOL MAINTENANCE JOES

Data Pool Maintenance is defined as the support required to keep the data

and directories in a state of efficiency or validiLy. Figure 6-1 shows the entire data

pool as a statement subsuming four items.

1 DATA POOL

I WORK AREA)

Figure 6-1. The Data Pool

Maintenance of the Data Bape and Directory is the responsibility of the Data

Administrator. The tools provided for his use are a set of system jobs collectively

known as Data Pool Maintenance jobs.

6-1

A |

Data stored in the Scratch Area is destroyed when a job request has been

fully executed. Data Pool Maintenance jobs do not operate on this data unless a user (
job is defined to ini:. a a @vstem Data Pool Maintenance job as a task within the user

job.

Data stered within the Work Arua can be maintained by system Data Pool

ML nt3nance jobs or by user jobs.

The Data Pool Maintenance jobs to be described in this section are system

jobs primarily concerned with Data Base data and the directories pertaining to Data

Base data. The jobs are categorized as:

(1) Item Definition Manipulations (Paragraph 6. 1),

(2) Data Manipulations (Paragraph 6. 2),

(3) Indexing (Paragraph 6.3),

(4) Linkage (Paragraph 6. 4),

(5) Other Maintenance Jobs (Paragraph 6. 5).

6.1 ITEM DEFINITION MANIPULATION

The logical structure of the data pool is altered through item definition

manipulations. The elements of the directory which describe the relationship of data

items are altered when maintenance Jobs of this class are executed.

Addition and deletion of definitions are provided for directly; modifications

are accomplished through a deletion followed by an addition. Addition is accomplished

with Define Item, and deletions are accomplished with Delete Definition, Delete Node,

or Renovate Item. Delete Node is the inverse of Define Item. Delete Definition leaves

the node in the structure as a null node, and Renovate Item squeezes out null nodes.

The reason for deletion will indicate which job is the best one to use.

Item Definition manipulations are pri:,-arily concerned with maintenance

of the Term Encoding Table, the Item List, and the Term List.

C6
6-2

6.1.1 Define Item

t Job Request: DEFINE-ITEM (node specificktion), (item image).

6. 1.1.1 Functional Description. This job adds vocabulary and structure to the

directories of AIMS in preparation for the entry of Reliability Central Data Bass data.

EXAMPLE:

DEFINE-ITEM TO PART FILE,
STRESS TEST, F

STRESS PARAMETER, A, V
TEST POINT, F

SEVERITY, E
TEaT RESULTS, F

NC. SAMPLES, I, 6
TEST HRS., I, 4
NO. FAILURES, I, 5

The Part file has beew previously defined as:

PART FILE, F

PART NAME, A, V

PART NUMBER, A, V

In the above example, the rtquestor wants to define a Stress Test file to be

subsumed under the Part file as follows:

PART FILE, F

PART NAME, A, V

PART NUMBER, A, V

STRESS TEST, F

STRESS PARAMETER, I
TEST POINT, F

6-3

~ . -

SEVERITY, 1, 6
TEST RESULTS, F

NO. SAMPLES, I, 6
TEST HRS., I, 4
NO. FAILURES, I, 2

When the Define Item job has run to completion, the Stress Test file and all

of its subitems are fully defined to the system and'data may now be added.

6, 1.1.2 Inputs. The inputs to the Define Item job are the node specification and the

item image.

(1) Node Specification. The node which is to be defined by the new
item structure is specified by a phrase. To add the n,•w structure
to the end of an existing file or statement. the phrase

TO (item name)

is used. The item name must identify an existing file or statement.
The phrase specifies that a new node is to be added to the end of the
statement or record and the new structure is to be placed at that
node, To place the new structure at a node which is currently null,
the phrase

AT (item name)

is used. The item name must identify an existing file. statement.
field or null node.

A term name used in any of the above phrases is the Term Encoding
Table name of a previously defined item. If the TET has more than
one ICC cross-referenceJ to the given term name, a qualifier must
be included in the ph. ase. For example: TO PART FILE IN DIODE
FILE.

(2) Item Image. The item image is an item definition in a form suitable
for computer input. The item may be a single terminal item su4 ch
as a fieli or null node. or a nonterminal item such as a file or a
statement with its subitems.

If the item image includes a file or a statement with no subsumed
items, the item name will be retained, but the Item type wilU be
changed to a null node.

6-4

*

6. 1.1.3 Results. There are no outputs produced by this job. The directories ore
* updated to include the new item definition.

6.1. 1..4 Directories Used

(1) Term Encoding Table.

(2) Item List.

(3) Term List.

(4) Segment Name List.

6.1. 1.5 Services Used

(1) Locate IL Entry.

(2) Open for Reading.

(3) Seek.

(4) Read.

(5) Close for Reading.

(6) Open for Writing.

(7) Write.

(8) Close for Writing.

(9) Open for Ur iting.

(10) Insert.

(1) Replace.

(t2) Close for Updating,

(13) Retrieve Item.

(14) Term Name to ICC Traml<ion.

• 6 1. 1. 6

(1) Sort.

(2) teow Image Translation.

6-6

6.1.1.7 Method of Operation. A is the program's name (formal) for the alphanumeric

string which includes the word TO, AT, or BEFORE followed by the term name of the C
node, with whatever qualifiers are necessary for uniqueness. B is the program's name

(lormal) for the item image after It has been translated into internal format and

validated.

(1) Page 1 is concerned with the translation of the job inputs into
interr.al coded form and the validation of these inputs. Then.
preparation is made to read file B, update the Item List with the
new items, and write a scratch file C, which contains the information
necessary for subsequent Term List and Term Encoding Table
updating.

(2) Connectors 2A, 2D, and 3C handle the Item List updating for the
TO, AT. and BEFORE options. File C is read, and the new items
are inserted into the Item List at the proper position. When EOF
is reached on file C, all paths join at 3D and 3E.

(3) File C is read again, and this time the Term List is updated with
term names wid units fields from the original item image. At
EOF, control goes to connector 4A.

(4) At connector 4A, file C is sorted by term name. Then file C is
read, and the Term Encoding Table is updated by inserting the
records of file C into their proper positions in the TET. Records
with blank term names are discarded in TET updating, but not in
Term List updating. The linkage mechanism between the Item List
and Term List requires a one-to-one correspondence between the
records of these two files.

(5) At EOF on file C, the job is terminated.

6-6

I OF

99

JIi

JAIfi

-~: -.

.9

Ilg

St

.... t''"
+ +i+ +1 eq

IIL

U.A41

I;
IJ!J li �j

HI
¶, 0�

I z

II�

b 13�1.. 0

bi

I

i
01 I

I

I

. . 4

�

6.1.2 Delete Definition

Job Request: DELETE-DEFINITION (item nmne).

6.1.2. 1 Functional Description. This job redefines the item names in (item nasn

as a null node. The name remains in the TET, but the Item ist entry is converted

to a null node. If (item name) is a statement or file (reoord is laqal), all suband

nodes are removed from the Item List and TET.

If this job is executed at a time when the Da BUse has data filed under this

structure, the sta will be deleted from the Data Base.

6. 1. 2. 2 I Tho on)y input is an item name. This Is term name (qualfled)

for the item which is to be redefined as 't v-ll node.

6. i. 2. 3 Results. The directories are updated as a result of this job, but there are

no job outputs.

6.1.2.4 Directories Used

(1) Term Encoding Table.

(2) Item List.

(3) Term List.

(4) Segment Name list.

6. 1.2.5 Services Jsed

(1) Locate UL Entry.

(2) Open for Reading.,

(3) Read.

(4) Close for Reading.

(5) Open for Writng.

(6) Write.

(7) Close for Writft.

'6-a

'S ©--~3

(8) Open for Update.

(9) Seek.

(10) Replace.

(11) Delete.

(12) Close for Update.

(13) Retrieve Item.

(14) Term Name to ICC TraasluitioD.,

6. 1. 2.6 Jobs U.sed 4

(2) Sort.

6. 1.2.7 Method of Operation. A is the progra~m's name (formal) for an alphanumeric

string which contains the term name for the item whose definition is to be deleted.

(1) After translating the term name to an ICC, the Rtem List
entry is retrieved. If the data exists, it is deleted. The
record number of this IL entry in saved so that it can be used
in deleting the proper records of the Item List.

(2) Connector 113 performs the deletion of Item List records, counting
as it goes, so that the same number of Term List records can be
deleted.

(3) At connector IC and 2A, the equivalent ri~crd are delete from
the Term List, and, for any subsumed Items with znrnblank term
names, a scratch file B is writtom. Scratch gile B includes
a record for each term name which will havc to be delet~ed from
the Term Encoding T&Ile (TEl').

(41 File B is sorted by term name and Is then uswed at connector 2C to
oontrol the deletion of records (or parts of rlecords when a term
.iame is equated to several ICC's) from the TET. When TEl'
updating is complete, the job ends.

6-12

ilk Im'

90 f~

to

2 .sit

C4.

6-1

tsll

Z5

elI
Id% A

o--o

0o

6.1.38 eletq_ de

Job Request: DELETF-NODE (item name).

6. 1.3.1 Firnctinal Description. This job removes the item named la (item name)

from the TET, Term List, and item List. If (item name) is a statement 4r file

(record is illegad), all aubetsLme nodes are also renwved. U1 this rt,.,aoval creates a gap,

the nodes beyond the point of removql will be reassigned to fill the gap. For example,

for the Job Request:

DELETE-NODE (B).

the folloving structural dlagrarm fllustrW tne reassignment of nodes C and D.

A1 A

32 -C
4 D 3 -D

BEFORE AFTER

If Delete Node causes a record's number of nodes to be reduced to zero,

the parent Lode (file) will be cnvre. elt to a null node. If this job is executed at a time

when the Data Base has data Aled under this structure, the d" will be deleted from

the Data Base.

6. 1.3.2 _Lnp . The only input is an item name. This is a term name (qualified)

for the item which is to be deleted.

6. 1.3.3 Results. The directorics are updated as a result of this job, but there are

no job outputs.

6. 1. 3.4 Diructorioa Used

.1) Term Encoding table.

A (2) Item List

(3) Term List.

(4) Yzkkar T ale,

(5) Segment N"e Lia.

i 6-615

31. .5 Services Used

(1) Locate IL Entry.

(2) Open for Reading.

(3) Read.

(4) Close for Reading.

(5) open for Writing.

(6) Write.

(7) Close for Writing.

(8) OQen for Update.

(9) Seek,

(10) Replace.

(11) Delete.

(12) Close for Update.

(13) Retrieve Item.

(14) Replace Item.

(15) Delete Data.

(16) Term Name to ICC Translation.

6. 1.3.6 Jobs Used

(1) Data Delete.
(2) Sort.
(3) Delete Definition.
(4) Renovate Item.

6. 1.3.7 Method of Operation. This job first calls on Delete Definition as a Job

Extension to redefine .he item "tuned in (item name) as a null node. All subsumed nodes

are rsaoved through this process. Then, the direct parent item (a file or statement)

is given to Renovate Item; thiough this Job Extension the mill node Is squeezed out and

any nmdes beyond the null nodo are reassigned to fill the gaii. Then, the Delete Node

job terminates.

CI
"3-16

Ei

fall

..
SB S

6-1

6.1.4 Renovate Item
Job Request: RENOVATE-ITEM (item name).

6.1.4. 1 Functional Description . This job removes all null nodes directly subsumed

by the statement or file named in Item name. For example, if nodes C and F are

listed as null nodes in the Item List, Renovate Item will accomplish the following:

I A I A
2 B 2 B
3 C 3 D
4 D 4 E
5 E
6 F

BEFORE AFTER

If Renovate Item reduces the number of nodes subsumed by a record to sero,

the item name will be converted, in the Item List, to a null node. If this job is executed

at a time when the Data Base has data filed under this structure, the data will be deleted

from the Data Base.

6. 1.4.2 Inp The only input is an item name, which is a term name (qualified)

for the item which subsumes one or more null nodes.

6.1.4.3 les. There are no Job outputs; the directories are updated to reflect

the structural change.

6.1.4.4 Directories Used

(1) Term Encoding Table.

(2) Item List.

(3) Term List.

(4) Linkage Table.

(5) Segment Name List.

S. 1.4.5 Swrviegused

(1) Looate IL Entry.

(2) Open for Reading.

Ii, 6"1S

. .i

(3) Seek.

((4) Read.

(5) Close for Reading.

(6) Open for Writing.

(7) Write.

(8) Close for Writing.

(9) Open for Update.

(10) Replace.

(11) Delete.

(12) Close for Update.

(13) Retrieve Item.

(14) Replace Item.

(15) Delete Data.

(16) Term Name to ICC Translation.

6.1.4.6 Jobs Used

(1) Data Delete.

12J Sort.

6. 1.4.7 Method of Operation. A is the program's name (formal) for an alphanumeric

string which contains the term name for the item whose subsumed nodes are to be

renovated.

(1) After translating the term name to an ICC, the Item List
entry is retrieved. Only files or statements me acceptable
items for renovation. If the named item is a file, its record
entry is substituted because the record entry contains the
number of directly subsumed nodes.

(2) At connector IA, the No Data Flag l tested. f data ousts, it is
deleted by calling on the Data Delete job as a Job Extension. While
the parent Item in still available, the rord number of this item in
the Item List file is stored along with the number of nodes currently
subsumed.

i 6-19

_ b

(3) The loop at connector IB looks at each subsumed item to detect
which are null nodes and how many null nodes there are. If this
process detects no null nodes, the job terminates because there
is no work to be done.

(A I ith the Item List record numbers for all null nodes available in
a "first in, first out" list, the Item List file and the Term List
file are opened for updating atoonnector IC. Scratch files B and C
are opened for writing. File B will get two kinds of records:

(a) A record for each term name which is to be deleted from
the Term encoding Table.

(b) A record for each term name referencing an ICC which
has to be modified in the Term EncodiLg Table.

File o" will get re.ords for all link items in the Item List beyond
the first - :11 ,ode on the stem being renovated.

(5) Comnectors .A through 2D are concerned with updating the Item List
and f'erai ;.t by deleting the records representing the null nodes
and grititw ,.oords of files B and C.

(6) Connector 2F. tokes care of the following special problem: if the
pare-t Itemn is a •tatement, the item size may legally be decremented
tG zer". di the parent item is a racord, and if the decrementing reduces
thE size to zero. this is illegal. The record item must be deleted
anc we filp itp,. converted to a null node.

(7) Connecur :A takes ca-e of decrementing the item size by the
numrner - null ndee deleted.

(8) Scratch flie B is sorted ny term name at connector 3D and is then
used to control a Ter-w Encoding Table (TET) update which removes
the names of null :iaei from the TET and decrements all ICC's
in the TET which are affected by the squeezing out of nuli nodes.

(9) Scrzih fiie C i aorteoahy ICC at connector 4A and is then used to
oontsol an item-n-.ast-to- ýAnkage-Table access so that the ICC's in
the LAnkage Tnl•e record,- at the other end of the links can be
decremente'1 prperly. After this is accomplished, the Job terminates.

C,

6-20

cI

7-
,� �

I

S V
U II

U

0
3

/

S£

z* dl
Id

,� ilh

I

641

U
I _______

5-

JIB

Ifie i
Ja

I ~I1e-n

aa

SIIII

Jll Wt

-n all]

II-2

QZA

474

4"

A bi

b. CCU

6.2 DATA MANIPULATION

Additions and deletions of Data Base data are the responsibiliy of the Data

Administrator, and the systeir lobs described in this section are the tools provided for

his use. Add Data and Delete Data are the basic jcba, with Replace Data combining a

delete and add and Modify Data for simple standardized filed replacemepts.

Addition and deletion of records within a file present a maintenance Problem

if the file is ordered and/or indexed. Records of indexed files are deleted by marking

their subsumed items as missing or null. This avoids the necessity of changing record

numbers in the directory tables connected w1'th inde-ing. After a file ha" had ,wany

records deleted by this technique, ti.L file may be compressed by the Compress File 46b.
This willP make all the record number changes at once, and will reassign consecutive

nuir-Iers.

For the ordered fle, records must be added In sequence and be deleted by

complete removal. If indexed fields are involved, the record number chagPg'cannot

be Jeferred f)r a subsequent compressiob. Update Data is a special job which allows

a set of transactions to be applied to an ordered file through matching on key values.

S~6-25

6.2.1 Add Data

Job Request: ADD-DATA (source), (item), (*ondition).

6.2. 1.1 emnctional Descripio!n. This job adds the data named as (source) to the Data

Base at the position specified by (item), If (item) does not represent a unique position,

the (condition) clause is used to completely specify the position. If a conditional search

does not yield a unique position, the assumptlhn Is that the source data is to be added

at all positions which met the condition. If no condition is given, the assumption ia thasP

the source daxa is to be added at all positions. Except when adding ordered records

to an ordered file, the source data must be a set of Items which will occupy contiguous

prositions in the Data Base.

6.2. 1.2 Inpl s. The inputs to Add Data are:

(1) (source) - the term name for a data item which has been
translated to internal form.

(2) (item) - the term name for the Data Base item. If this
class of item is subsumed within the records of
a file, the position at which the data is to be
added should be specified by a condition.

(3) (condition) - a Boolean statement which specifies the position
within the Data Base of the missing iteni which Is
to receiva the source data.

6.2. 1.3 Results. The data is added at the position specified. There are no job outpits.

6.2. 1.4 Directories Used

(1) Tco.-m Encoding Table.

(2) Item List.

(3) Fields File.

(4) Shadow of Field, File.

(5) Segment Name List.

C-
6-26

=A

(!) cte IL Entry.-

2)Open for %od4ing.

f4) Close fo~r Heading.

(5))pen for Writrg

(7) Close for Writing.

(8) Open for Update.

(9) Seek.

(10) Replace,

(11) Insert.

(12) Close for Update.

(13) Retrieve Item.

(14) Replace Item.

(15) Insert Data.

(16) Term Name to ICC Translation.

6.2. 1,6 Jobs Used

(1) Conditional Search.

(2) So~rt.

.6.2. 1.7 Method of Operation. A io the program's name (formal) for the Data Base
Item which is to receive the data. B is the program's name (formal) for the condition
which nill becomi: the input to Conditional Search used 3& a Job Extension. C is the
program's name (formal) for the list of'IPC's produced by Conditional Search or by
Datsi ~dd Itself if Conditiona! Search 1,4 not executed. D is the pvogram's name (formal)
for the source item whose definition io the Directory and whose data is in the working

'.of the Data Pool.

6-27

(1) Page 1 is all preparation. A is examined first:

(a) If there are no R's in the ICC (i. e., a primary item),
the ICC which is an IPC is written into fte C.

(b) If there is one or more R's in the ICC and if B is
present, Conditional Search is used as a Job Extension
to build file C.

(c) If there is one or more R's in the ICC and if B is not
present, an Explosion is executed. Explosion increments
each R in turn and writes out IPC's until it reaches
EOF. Its output is file C with IPC's for all occurrences
of the given ICC.

All paths join after file C is written and the source item D is then
translated into an ICC.

(2) At connector 2A, a test is made to discover if this data will be the
first data to be filed at this node in the Data Pool structure. If the
No Data Flag is set, the parent item Wi the structure is examined
to make certain that the parent has data. If the parent item has
data, then this addition of subsumed, iata is legal. Then, the Item
Lists of source (D) and target (A) ae compared to make sure that
the Add is legal.

(3) At connector 2B, the source item is examined, and the program
branches based on item type of the source item. All paths rejoin
at connectors 7D-7H.

field - , connector JA
nonordered file - . connector 3D
ordered file connector 4A
statement conrnector 5B

(4) For field addition, the single field named as source is retrieved by
IPC and inserted into the Data Pool in each position listed in file C.
For each insertion, if the field is indexed, a record containing ICC,
Field value, and R-value is written into file E, which will later
become the input to Fields file and Shadow of Fields file updating.
When EOF is reached in file C, control goes to connector 7H.

(5) For nonordered file addition, the source file identified as file D
is read one field at a time and inserted into the Data Pool at EOF in
each target file. listed in file C. For each insertion of an indexed
field, a record is written into file E. When EOF is reached in
file C, control goes to connector 7G.

6-28

(6) In ordered file addition, if a target file is missing the addition
is equivalent to a nonordered file because the source file is assumed
to be in order. If a target file has some records, the new records
of file D must be inserted in order by key value, and this kind of
insertion changes the record numbers of all records be- 3nd the point
of insertion. If indexed fields are involved, this will require changing
the R-values in the RVIT files. To prepare for this, file F is
opened for writing and an output buffer is established as follows:

R- VALUE OLD RECORD IN4CREMENT ICC OF
OF FILE NUMBER INDEXED FIELD

At connector 4D, a source record is read to get the key value. This
key value is used as an identifier for Seek within the target file. The
record number is stored in the output buffer along with an initial incre-
ment of one. Then, the source record is read one field at a time and
inserted into the target. Each indexed field causes a record of file
E to be written and the output buffer is written into file F for each
indexed field in the record. At end of record, at connector 5A, the
increment is increased by one and the Seek yields another old record
number for the output buffer. Then the Read Source-Insert In Target
process is repeated. At EOF of source, file C is read again to find
the next target file which is to receive the same source data. When
EOF is reached in " C, control goes to connector 6A. If no indexed
fields were added, Inere were no records written into File F and
control would go to connector 7E.

If file F nas recc rds, it is sorted by ICC, R-value of parent file, and
old record number. Then, for each ICC in the records o" file F, the
following procedure is carried out to correct the R-valueai in the
affected RVIT files. The ICC is used to access the FVT file in order
to get a total record count of the FVT file and to discover how many
RVIT files need to be scanned. Each RVIT file is read to discover
the section which has R-values matching the R-value of the data file
to which records have been added. Within the proper section of RVIT,
the record numbers at which insertions were made (from file F)
are used to discover which R-values need to be incremented in their
least significant digit. The increment is added and the R-value is
replaced in the RVIT file. When file F reaches EOF, all R-values
have been incremented, and control goes to connector 7D.

(7) For a statement addition, the source statement, D, is read one field
at a time and inserted into the Data Pool in each target statement
listed in file C. For each insertion of an indexed field a record is
written into file E. At EOF of file C, control goes to connector 7F.

(8) All paths join at connectors 7D-7H. If there are no records in file
E, no indexed fields were added, and the job terminates.

6-29

ff indexed fields have been added, file 9 Is sorted by ICC. Then,
all recorda pertaining to • slin& ICC are written into file G which
serves m" fpt to task 2 of the ln•li job used as a Job Extenalon.
Whbr al! ICC 'I within file E h:ve been processed, the updating of
the direct'rles pertaining to Indexing is complete, and Add Data
tea minates.

6-30

• qm lnm mm m m m~mmm m lmlm immm mm mam,• a mammmmmmA um • • m • r m• Im w

rir

dji

11111 j31

be-

all

C-

6-32

CC

z0

S y--

-8-3

1 42

b-00

-..•] !- z

ccS

a a•

aa

it

9-34 i

3 ,', ,

N
a

(
a

II
0

4. a

I�I..

a

0
o� a-

0
z

0�
I.. �

13 4

m 4

g
0 0 -

2 U �- *13;.-,".

0

Ii�1.
-�

ijo

V

�- � //

0

6-36

&

w

coc

I '-N

:-xu y
A

z -

i-i

�
- - I,I - I

1/k / I
� /1 /

S -

L�J

I -�

C
I�c

S

U I
� I

1

(�. I

I

R > 40

AI

6-37:

Al 0

•'• \ , I>0

0 , •
/V< I

-C L __

6-3

acI

iI

S 0

6-38

,kp) JAest- 1-'. A-. ' s u ., -ATAm , (conditio)).

6. 2, 2. .1 Functional Description. This job Fubstitutes the data named as (bource) for

the data which exists at the position specified by (item) and (condition). Replace Data

is logically equivalent to Delete Data followed by Add Data,

it a conditional search does not yield a unique position, the assumption is J
that the source data is to replace the current data at all positions which met the

condition. If no condition is given, the assumption is that the source data is to replace
current data at all positions. The source data must be a set of items which will occuty Iv
contiguous positions in the Data Base and will completely replace the currc-nt ccntiguous

data, See Update Data for selective or noncontiguous replacements of records within a

""le.

6. 2. 2. 2 Inputs. The inputs to Replace Data are:

(1) (source) - The term name for a data item. The data represented
by this name has been translated into internal
segmented Lorm and stored in the Data Pool.

(2) (item) - The term name for the Data Base item which is to
receive the replacement, If the item is subsumed
within the records of a file, the position at which the
replacement is to occur should be specified by
(condition).

(3) (condition) - a Boolean statement which specifies the position at
which the replacement is to occur.

6. 2, 2.3 Results. There are no icb outputs; the source data replaces the orivi-,'

data at the position sp- Aified.

6. 2. 2. 4 Directories Used

(1) Term Encoding Table.

(2) Item List.

(3) Fields File.

(4) Shadow of Fields File.

(5) Segment Name List.

6-39

6.2. 2, 5 Service5 Used

(1) Locate IL Entry.

(2) Open for Reading,

(3) He&d.

(4) Close for Reading.

(5) Open fo, Writing.

(6) Write.

(7) Close for Writing.

(8) Open for Update.

(9) Seek.

(10) Replace.

(11) Insert,

(12) Delete.

(13) Close for Update.

(14) Retrieve item.

(15) Replace Item.

(16) Insert Data.

(17) Delete Data.

(18) Trm Name to IC0 Tranislat....

6. 2. 2. 6 Jobs Used

(1) Conditional Search.

(2) Sort.

6. 2. 2. 7 Method of Operation. For the initial implementat~on, this job will be aLcomp-

lished by executing two other jobs as Job Extensions. First the Deiete Data job will be

used to mark the data as missing or null in the Data Base segments. Then the Add Data

6-40

job will he u.3ed to insert the source data at the position just recoroed as missing or null.

'Subsequent versiors of Replace Data can be -made vi_,ýre efficient by analyzing the number

of data segments to be affected by the replauement and c3o;sing from a set of alt.er..ativ
procedures. More experience is needed on the rate of change, and kind of changes,
before attempting wo improve efficiency in this area.

6I
I

I

II

6-41

It

Ii

1 1 w

ii C

6-42

6.2.3 odýify Data

Job Request: MODIFY-DATA (expression), (item), (condiLion,).

S. 2. 3. 1 Functional Description. This job is similar to Replace Data except that there

is no source data. Instead of providing new data to replace the old, the expression clause

gives an arithmetic operation to be performed on the old data. The results of the

arithmetic operation then replace the old data (e. g., SALARY + 500) at the position(s)

specified by (item) and (condition).

Modify-Data req.Ares that (item) be defined as a field. If a conditional search

does not yield a unique position, the assumption is that all positions which met the

condition are to be modified. If no condition is given, the assumption is that all positions

are to be modified.

6. 2. 3. 2 Inputs. The job inputs are:

(I) (expression) - a specification for an arithmetic operation
-n two operands. The first operand is the term
name for a field, the operator is an arithmetic
operator (+or-), and the second operand is a
conptant, (e. g., SALARY + 500).

(2) (item) - the term name for the Data Base field which is to
be modified. Unless all occurrences are to re-
celve tho modification, a condition is needed.

(3) (condition) a Boolean statement Wh•ii specifies the poit.ion(s)
at which the modiftcation is to occur.

6. 2. 3. 3 Results. There are no outputs except for the data which has been modified.

6. 2. 3. 4 Diroctories Used

(1) Term Encoding Table.

(2) Item List.

(3) Segment Name List.

6. 2.3. 5 Services Used

(1) Locate IL Entry.

(2) Open for Reading.

6-43

(3) Read.

(4) Close for Reading.

(5) Open for Writing.

(6) Write.

(7) Close for Writing.

(8) Retrieve Item.

(9) Replace Item.

(10) Term Name to ICC Translation.

6. 2. 3. 6 Jobs Used. Conditional Search.

6.2.3.7 Method of Operation. A is the program's name (formal) for the Data Base item

which is to receive data. B is the program's name (formal) for the condition which will be-

come the input to Conditional Search used as a job extension. C is the program's name

(formal) for the list of IPC's produced by Conditional Search or by the program itself

if Conditional Search is not executed. D is the program's name (formal) for the

expression.

(1) Page 1 is all preparation. A is examined first. It is retrieved,
translated into an ICC, located in the Item List, and the item type
is tested for field. If the ICC has one or more R's, B is retrieved.
If B exists, the condition is given to Conditional Search for evaluation.
and file C is writtc. l ," Lul.ltlOhal Search to include the IPC's which
satisfy the condition. If B is missing, an Explosion subrouti, e is
executed to produce file C, wl4ch includes all IPC's for all ocmur-
rences of A. If the ICC of A has no R's, file C is produced with one
record containing the ICC which is an IPC.

(2) After file C is created, the expression is retrieved at connector lB.
At connector 2A, the first operand of the expression, the term name,
is compared with A. If they match, the second operand, the constant,
is translated into the item type (decimal, octal, etc.) of the term.

(3) File C is read to get the target IPC and to build proper identifiers
for Lhe Retrieve Item and Replace Item service calls. Then, the
field is retrieved from its position in the Data Base and th,-
arithmetic operation is performed on it. The result is rc.'iaced in
the Data Base at .he iame position. This completes the modification.

(4) Succebsive records are read froi i file C, and the same arithmetic
operation is performed at each position listed in file 12. When EOF is
reached, file C Is closed, and the Modify Data job terminate?

6-44

PAA

00

0W 1

6-4

ci 'o

S~ E

0.9

6-46

6.2.4 Update Data

Job Request: UPDATE-DATA (3ource), (item), (conditionl.

6.2.4.1 Functional Description. Replace Data is a one-to-one or one-to-many

substitution of the source data for the current data. Replace Data is a one-to-one

substitutior it the position specified by (item) and (condition) is u.ique. Replace Lata

is a one-to-many substitution if Ccnditional Search does not yield a unique position.

Update Data is a nrny-.o-many substitution specifically designed to provide

for a batch or series of record replaceitents within an ordered file. If the source and

target files are both ordered by the same krey field, Update Data is a simple two-way

merge, with a source record replacing a target rec0 rd whenever the keys match.

Nonmatching source records are ignored in Update Data. The Add Data job inserts new

records in their proper positionE within an ordered file.

6.2.4.. Inputs. The inputs ai e:

(1) (source) - the term name for a data file which contains
the transaction or change records.

(2) (item) the term name for the Data Base file which is
to be updated. If this file is subsumed, (con-
dition) should be used to specify the position
of the file.

(3) (condition) - a Boolean statement which specifies the position
within the Data Base of the file named in (item).

6.2.4.3 Results. No job outputs except for the updated data itself.

6.2.4.4 Directories Used

(1) Term Encoding Table.

(2) Item List.

(3) Fields File, *

(4) Shadow of Fields File. *

(5) Segment Name List.
*Note: The method of operation described herein assumes that ordered files will not be
indexed, so these directories are not affected. If the scope of Update Data is enlarged to
include the updating of indexed field values, then these directories will be affected.

6-47

6.2,4.5 Services Used

(1) Locate IL Entry.

(2) Open for Reading.

(3) Read.

(4) Close for Reading.

(5ý Open for Writing.

(6) Write.

(7) Close for Writing.

(8) Open for Update.

(9) Seek.

(10) Replace.

(11) Close for Update.

(12) Retrieve Item.

(13) Term Name to !CC Translation.

6. 2. 4. 6 Jobs Used. Conditional Search.

6.2.4.7 Method of Operation. A is the program's name (formal) for the Data Base

item which is to receive updated data. B is the program's name (formal) for the

condition which will become the input to Conditional Search used as a job extension.

C is the program's name (formal) for the list of IPC's produced by Conditional Search

or by Update Data itself if Conditional Search is not executed. D is the program's name

(formal) for the source file which contains transaction or change records.

(1) A is retrieved and translated into an ICC. Then the Item List
entry is retrieve•, and saved. If the ICC contains one or more
R's, input B is retrieved. If a Boolean condition has been given,
Conditional Search is executed to produce file C which will contain
a list of all IPC's which satisfied the condition.

(2) If the target item's ICC contains one or more R's and input B is
missing, an Explosion subroutine is executed to produce file C
with all IPC's listed. This occurs at connector IC.

(6

6-48

S•~~~~I Tf th4. tasrget !**r•ve TCC r.,.,,,z••, Ris it. e. , a pi-lmr oi)

control goes to connector IB, where file C is produced with onerecord listing the ICC of A as an IPC.

(4) File C now contains one or more IPC's locating the positions in the
Data Base which are the targets for updating by the source data.
At connectors ID-iF, all paths join and the name of the source data is
retrieved and translated into an ICC. If this ICC contains one or
more R's, there is an erro- Source data is expected to have a
one-to-one relationship between name and IPC.

(5) At connector 2A, a series of validity checks is performed to assure
that both source and target items are files and that both friles have
the same subsumed structures. Update Data operates on complete

records only. Since apdating will be accomplished through -atching
the values of key fields, both source and target files must be ordered
by the same key field.

(6) The first target [PC is obtained from file C at connector 2B. Then,
source file D is opened for reading and the target file is opened for
updating. A record of source file D is read, and the value of its I
key field is used to build an identifier for positioning the target file.
If the target file does not contain a record with a key field value
matching the source record, the source record is skipped over and
the next souree record is read. When key values match, the source
record replaces the target record in the target file.

(7) At EOF of source file D, both fields are closed, and control returns
to connector 2C to repeat the process on the next target IPC.

(8) When file C finally reaches EOF, the Update Data job terminates.

6

€I

6-49

i~ im

llll i --

ap

6-5

jil if

NI

6.2.5 DeleteData

Job Request: DELETE-DATA (item), (condition).

6.2.5.1 Functional Description. This job removes the data stored at the position

specified by (item) and (condition) from the Data Pool. If the data named in (item) is

primary (no R's in its ICC), the (condition) is not required because the ICC is equivalent

to the position (IPC). If (condition) is used to specify a position, and if Conditional Search

does not yield a unique position, the assumption is that the data is to be deleted from all

positions which met the condition. If no condition is given, the assumption is that the data

is to br Jeleted at all positions. This will not set the No Data Flag, because missing or

null trace information is retained in the data segments.

6. 2. 5. 2 Inpits. The job inputs are:

(1) (item) - the term name for the Data Base item. If this class
of (item) is subsumed within the records of a file,
the position at which the data is to be deleted should be
specified by a condition.

(2) (condition) - a Boolean statement which specifies the position within
the Data Baso where the data deletion is to take place.

6. 2. 5. 3 Results. The data is deleted.

6.2. 5.4 Directories Used

(1) Term Encoding Table.

(2) Item List.

(3) Fields File.

(4) Shadow of Fields File.

(5) Segment Name List.

6.2.5.5 Services Used

(1) Locate IL Entry.

(2) Open for Reading.

(3) Read.

6-52

4k

(4) Close for Reading. I
(5) Open for Writing.

(6) Write.

(7) Close for Writing.

(8) Open for Update.

(9) Seek.

(10) Replace.

(11) Delete.

(12) Close for Update.

(13) Retrieve Item.

(14) Replace Item.

(15) Delete Data.

(16) Term Name to ICC Translation.

6.2.5.6 Jobs Used

(1) Conditional Search.

(2) Sort.

6. 2. 5.7 Method of Operation. A is the program's name (formal) for the data base

item which is to be deleted. B is the program's name (formal) for the condition which

will become the input to Conditional Search used as a Job Extension.

(1) A is retrieved, converted into an ICC, and the Item List entry
for A is located. If there are no R's in the ICC (i. e., a primary
item), the ICC which is an IPC is written into file C. If there is
one or more R's in the ICC and if B is present, Conditional Search
is used as a Job Extension to build file C. If there is one or more
R's in the ICC and if B is not present, an Explosion is executed.
Explosion increments each R in turn and writes a,,t TPC'e until it
reaches EOF. Its output is file C with IPC's for all occurrences of
a given ICC.

6-53

(2) The IPCIs of file C are used one at a time to identify the position I
for deleting. If the No Data Flag is set in the Item List, the job citerminates immediately.4W

(3) At connector 2A, the program branches, based on the item type
of the item to be deleted.

(a) For a File. All subsumed items are examined in the Item
List to discover if any fields are listed as indexed. If not. the
file is marked as missing in the data segment, and the
next IPC is retrieved from file C. If any subsumed fields
are listed as indexed, the data itself is read and, for each
indexed field in the data, the following record is written
into scratch file D.

FILE D, F I
FIELDS FILE RECORD NUMBER, I, 18
FIELD VALUF, B, V
R-VALUE, H, V

Then, the file is marked as missing in the data segment,
and the next IPC is retrieved from file C.

(b) For a Statement. A statement is handled just like a file.

(c) For a Record. All subsumed items are examined in the
Item List to discover if any fields are listed as indexed.
If not, the record is deleted from the file and any following
records are moved up to fill the gap. Then the next IPC
is retrieved from file C. If any subsumed fields are listed
as indexed, the data itself is read and a record is written
irto scratch file D for each indexed field. Then, each
directly subsumed node is recorded as missing or null in
the data. The record is not squeezed out of the file. The
next IPC is retrieved from file C.

i

(d) For a Field. The field is retrieved from the data. If it
is an indexed field, a record is written into scratch file D.
The field is marked missing cr null in the data. Then the
next IPC is retrieved from file C.

(4) When EOF is reached in file C, control goeb to connector 'E. If
there has been no writing into scratch fE.ke D (I. e., no indexed fields
involved), the Delete Data job terminats.

(5) If file D contains data, it is sorted by uting the complete record as a
key. This brings W-!e D Into the same order as the Fields file and
Shadow of Fields file. For each different Fields File Record Number
in file D, the following directory updating is performed, starting at
connec 4 F.

6-54

*i

(6) The proper Fields File record is located in the Field file. Scratch
file E is prepared for writing as follows:

FILE E, F

RVIT FILE IDENTIFIER, H, V
R-VALUE FILE, F

R-VALUE, H, V

For each match between a field value in file D and a field value in
the FVT file, P record is written in scratch file E. The record, ire
counted as wri'ten. When the Fields File Record Number in f" D
changes, the Value/Range Occurrences field in FVT file is decremented.

(7) When EOF is reached in file D, Fields file updating is complete,
and file E is used to control the updating of the Shadow of Fields file.

(8) For each different RVIT file identifier in file E, the following
procedure is followed, starting at connector 6A.

(a) The proper RVIT file is located by using the RVIT file
identifier in file E. The records of the RVIT file are read,
and each record matching an R-value in file E is deleted
from the RVIT file.

(b) When all RVIT file identifiers in file E have been processed,
and EOF is reached, Delete Data terminates.

6-55

SiiM i

4>Z.

1 z c

tý z m

I i

si

(9D

24)

6-57

n 0

01

z z

8 e: i

- *�.-'� �4'.N, � � - - -

£

�

a
a

L�± 7i I

� I
C

I�3

a

�1..h.

I..
CE- �
�I.

�

41

C

iii
�J �,

C

6-59

jj

iJin
6-00

I;
£ Ii! ii

0

0

z

10

I
3

2
0

k

6.2.6 Compress File o

Job Request: COMPRESS-FILE (item), (condition).

6.2.6. 1 Functional Description. When records are deleted from a file which has

indexed fields, the records are not squeezed out b~cause this causes a "ripple" effect

in the directory table which stores R-values for indexed fields. Instead, the records are

deleted by marking ad directly subsumed nodes as miosing or null in the data. This

prevents the ripple effect at a small expense in storage space.

Compress File will squeeze out all records containing only missing or null

data and will reassign record numbers as a contiguous set from I to n. Compress File

will operate on ordered and/or nonindexed files, but is designed to complete the record

deletion process on indexed files. If no condition is given, the assumption is that

compression is to take place on all files of the class. If (condition) is used to specify

a position, and if Conditional Search does not yield a unique position, the assumption

is that compression is to take place at all positions that met the condition. Compress

File operates on directly subsumed nodes; subsumed files are not compressed.

6. 2. 6. 2 Iputs. The two job inputs are:

(1) (item) - The term name for the Data Base file. If this clAss
cf file is subsumed within the records of another file,
the position at which file compression is to be accomplished
should be specified by a condition.

(2) (condition) - a Boolean statement which specifies the position within
the Data Base of the file to be compressed.

6. 2. 6.3 Results. The compressed file is the only result of this job.

6. 2. 6.4 Directories Used

(1) Term Encoding Table.

(2) Item List.

(3) Fields File.

(4) Shadow of Fields File.

(5) Segment Name List.

6.4.

8. 2.86.5 Services Uted

(1) lo~cate IL Entry.

(2) Open for Reading.

(3) Read.

(4) Close for Reading.

(5) Open for Writing.

(6) Wrilte..

(7) Close for Writing.

(8) Open for Update.

(9) Seek.

(10) Delete.

(1) Replace.

(12) Close for Update.

(13) Retrieve Item.

(14) Term Name to ICC Translate.

6. 2. 6.6 Joba Used

(1) Conditional Sear^eh.

(2) Sort.

6. 2. 6.7 Method of Operation. A 1.s the program's nao (formal) for the file which in

to bie compressed. B to the program's name (formal) for the conditon. which will be-

come the input to Conditional Search used as a Job Extension.

(1) A in retrieved, converted into an ICC, and the Item List entry
for A is located.

(a) If there are no RI ainthe ICC (I.e. , a primary file), the
ICC which Is an IPC is written into file C.

7-6

(b) If there is one or more R's In the ICC and if B is present,
Conditional Search is used as a Job Extension to build
file C.

(c) If there is one or more R's in the ICC and If B is not prerent,
an Explosion is executed. Explosion increments each R in
turn and writes out IPC's until it reaches EOF. Its output is
file C with IPC's for all occurrences of a given ICC.

(2) The IPC's in file C will be used one at a t'me, and, for each IPC in
file C, a file will be compressed. The return point in this outermost
loop is to connector 2F. Before getting into this loop, scratch file
D is written to include the ICC's of all subsumed indexed fields.
This takes place at connector 2A.

(3) Starting at connector 2C, each directly subsumed node of record I
is read (or the first part of a nonterminal item is read) to discover
whether or not this node in this record is marked as missing or
null in the data. As soon as any data is transmitted to the buffer
as a result of a Read, the current record is discardld, and node l
of the next record is read. When EOF is reached, this file is closed,
the next IPC is read from file C, and control returns to connector
2F.

(4) Once all no.des of a record have been read and discovered to be

missing or null, control goes to connector 2D.

(5) For each indexed field in an empty record, a record is written into
scratch file E to include:

R-VALUE AMTOF OLD RECORD I ICC OF IN-
OF FILE DECREMENT NUMBER DEXED FIELD

The number of records in scratch file D determine the number of
records written into file E for each empty record. Then, the empty
record is deleted from the file, and control returns to connector 2E
to process the succeeding record.

(6) At connector 3C, after all IPC's in file C are exhausted, all files
have been compressed, and the job terminates unless indexed fields
have been involved and records have been written into scratch file E.

(7) File E is sorted at connector 4A by ICC: P-vase of File. and Old
Record Number. Each ICC in file E will lead to a separate FVT file,
and from there to a set of RVIT files which contain the R-Values which
must be decremented to account for the squeezed out records.

(8) For each ICC in file E, the item list it accessed to retrieve the re-
cord number needed to identify the FVT file. The number of records
in the FVT file Is determined because there is an RVIT file for each
record in the FVT file.

6-64

(9) At connector 4C, an RVlT file is scanned to find the section
"rietaining to the file which h~a been compressed. When the
provper section io reached, any fl-values beyond the squeezed-out
records are decremented by the number of deleted records.

(10) When EOF In reached in an RVJ1T file, the next RVIT file is processed
until all RVIT files pertaining to 9, single ICC are exausted. Then,
the next ICC from fie E is selected an per step (8).

(11) When all ICC's in file E have been handled, all B-values in all
RVrITs affected by all file compressic-% nave bee corrected, and
Compress File terminates.

aa

AS

IjI
aw~

i
Ili

iAV

k / ci

'22 '.X 44•4v '

II

Ih 111 J
Oila

lite

'40 Wo

Ii
I�.

z0

E 0
(5"

� I

1 4I I�I�
4.

d j ii'

CTT

S 6ot

lil lite

mol-

i
'go

o C

*

C
2

Al Ea

j U4?

ii
hi.4.

0
p.

Ba
h.aji 0
ha

I%
J�J JR1x

4.

(K
6-70

6.3 INDEXING

Indexing is the process of recording field values and record numbers in the

directory so that retrieval requests can be satisfied without searching through unwanted

data. Once a field is indexed, all subsequent data additions will cause automatic indexing

by the same mode. Data deletions will eruse automatic deletion of the record numbers

cross-referenced to the field values of the deleted fields. An indexed field can be un-

Indexed through Remove Index if the usage for speedy retrieval does not justify the

additional directory storage space and maintenance job running time. These jobs are

primarily concerned with maintenance of the directory elements identified as Fields

file and Shadow of Fields file.

6.3.1 Index -

Job Request: INDEX (field), (mode), (list).

6.3.1.1 Functional Description. This job operates on fields within the Data Base

or directories. It retrieves all occ"rrences of the field named in (field), cross-references

the field values to the R-values, and stores this information in the directories. The

method of grouping the field values is specified in (mode), and the (list) provides the

groupings. The inverse of this job is Remove Index.

6.3. 1. 2 Inputs. The inputs to the Index job are (field), (mode), and (list). Field is

the term name (qualified) for the data base field which is to be indexed. Mode is the

word ALL, LIST, or RANGE. If ALL is specified, no third input Is required because all

field values will be listed in the index table. If LIST or RANGE is specified, the (list)

input is a list of individual values or a list of ranges which represent the groupings of

field values which are of interest.

6.3. 1.3 Results. The index tables are updated as a result of the execution of this job.

6.3.1.4 Directories Used

(1) Term Encoding Table.

(2) Item List.

(3) Fields File.

6f7

6-71

(4) dheow of Fields File.

(5) Segment Name List0

6.3. 1. 5 Services Used

(1) lcate IL Entry.

(2) Gpen for Reading.

(3) Seek.

(4) read.

(5) Close for Reading.

(6) Open for Writing.

(7) Write.

(8) Close for Writing.

(9) Open for Update.

(10) Insert.

(11) Replace.

(12) Close for Update.

(13) Retrieve Item.

(14) Replace Item.

(15) Term Name to ICC Translation.

6.3.1.6 Jobs Used. Sort.

6.3. 1.7 Method of Operation.

(1) Page 1 processes the three job inputs: (field), (mode), and (list).
A is the program's name (formal) for the alphanumeric string which
contains the term name for the field to be indexed, with whatever
qualifiers are necessary for uniqueness. B is the program's name

t (formal) for the alphanumeric string which contains the mode of
Indexing; ALL, LIST or RANGE. C is the program's name (formal)
for the optional list of values or ranges to be used for indexing modes
LIST or RANGE. After translating the term name into an ICC,

6-72

the Item List is updated to include the new index code and the record
number link to the Fields file. Then, for modes LIST or RANGE,
file C is read and the Fields file Record is built to include the FVT
file. For mode ALL, the Fields file Record has a missing FVT file.

(2) At connector 2E for mode ALL, a missing Shadow of FVT file is
inserted to correspond to the missing FVT file. At connector 2A
for modes LIST and RANGE, the Shadow of FVT file gets a number
of records equal to the number of records in the FVT file. Each of
these records has a missing RVIT tile.

(3) At connectors 2B and 2C, all paths joln. Here the data is actually
retrieved, and, for each occurrence of the field in the data, a
record is built as follows:

I ,D VALUE

L-VAI '".E

These records are written into a scratch file D. Task 1 ends here,
because the remaining work is part of another job (Add Data) as
well as the Index job.

(4) Task 2 sorts scratch file D by field value (major) and R-value (minor),
because both the FVT and RVIT are ordered files. E is the sorted
file D, and F is a scratch file which will be written with the following
structure:

FILE
F

-RVIT FILE IDENTIFIER

l---VALUE

(5) Page 3 reads file E, inserts the field values in the FVT file, and
writes the R-values into file F, This is for a newly indexed field,
mode ALL, which has had a missing FVT file until this step.

(
6-73

(6) Paep 4 performs the same function for mode LIST/RANGE where
each new field value ,ms to be eamilned to see if it fits any of 0o,
LIST or RANGE entries In the FVT file. If it dues not fit, it isl
discarded, but if it does fit, the R-value to written mto file F.

(7) Connector K is common to all 1Wh.6. Here the RVIT file is updated
by inserting the R-values Into the file in ascending order. Eaoh field
value in the FVT applies to a different RVIT file and the RVIT file
ident/f!te. in file F ts used to aelect the proper RVIT files.

(8) On reachimn EOF in file F, task 2 terminates and this is the end of
the job.

6-74

l+ + I

7

� ---.------ �----.--,----.�-------.---------.-- -

U U

V.
-lit
K

A

I- ii�
2
p.

p
;?h.

z0

A.e� 1

dI� 1111

6-75

fieI

IIs

I;ICU
L.4

k 0o

ii

6.3.2 Remove Ibndsm

C Job Request: REMOVE-INDEX (field).

6.3.2.1 Functional Description., This job is lbs lverse olbu hi. desbaoys h

directories which cross-reference field values to H-values and meiks the field to

unindexed In the Item list.

6.3.2.2 R!~a The only input is the term name (qualified) for the field which Is to

be Indexed.

6.3.2.3 Results. The index tables are updated to Include the bunt field.

6. 3 2. 4 Directories Used

(1) Term Encoding Table.

(2) Item List.

(3) Fields File.

(4) Shadow of Fields File.

(5) Segment Name Lst.

6.3.2.5 Services Used

(1) Locate MLEntry.

(2) Open for Update.

(3) Seek.

(4) Delete.

(5) Close for Update.

(6) RepAsoe Item.

()Retrieve ftsm.

(6) Term Name to ECC TrmlM~a.

6.3S.2. 6 JO* Used. None.

417

6. 3. 2.7 Method ofOR~rq [
(1) The only job twau is (geld The program was the braui am A

.be hs alaihmmwi string vhich coutuea doe term nam for the
fijiý with whatsvr quaifer. wre aseessar br aulqmazs. A is
istrievod and translated labe an ICC. The the Rena lhst ewhy Is
retrieved sed the recoord nmbcer link fa the Field file mmd Masaw
of Fields file is saved in storage at onodaeor IA.

(2) Then, the IL entry is mWodiid to lncaded index code gmeandog
vat Indexed, and the record number Is replaced by zeros.

(3) Using the record ummber of fidd r rPag ntef"M
the whole record is deleted. Thbn Me a nrecordziniiiiiis nJd
to find tho proper pOace in the Oadow of Fi& edsil, and that whole

rord is deleted. Then the job terminates.

O-W

- ~~Kt.7~ :

544

A J

1A

a A

J I !

! l] .4h

S...
..- 2 .

6.4 LINKAGE

Linkage is a mechanism for expressing a relatiorsaip between different 0
data structures. In AIMS, the item definition describes the structure and the data is

stored in sequence an structurally defined. If -t is desirable to physially separate data

and maintain its relationship, or to relate data stored in separate structures, then

Linkage is the appropriate mechanism.

The Link job adds source and target link items to the Item List and records

the structural relationship in the linkage table of the directory. Remove Link is the

inverse of Lnk.

Before two structures can be linked, each must contain a field of the same

size and type, becauae it is through the field values of the subsumed field that the actual

data linkage is accomplished.

6.4.1 Link

Job Request: LINK (source), (target).

6.4.1.1 Functional Description. This job relates or ties an item in one structure

to an item in another structure by introducing source and target link items which subsume

the link fields. The Link job introduces the source and target link items iuto the two

,, structures and builds a Linkage Table entry for the directory.

6.4.1.2 h The phrases (source) and (target) have the form:

link item name (field name)

The source and target Iink items are defined to the system when the

Link job is exocuted. The source and target field items must have been defined earlier

"throuh a Defne IHem job. If the two fleid items have the same term name, qualifiers

ust be used to identify the two structures now being I aked.

6.4. 1.3 Reslts. The link items are defined in the system direotortes.

6.4.1.4 DireorlesUsed

(1) Term Enooding Table.

(2) bm ltst,

"0

6-es

A,

(3) Term Listo

((4) Linkage Table.

(5) Segment Name List.

6.4.1.5 Services Used

(1) Locate IL Entry.

(2) Ope, for Update.

(3) Seek.

(4) Insert.

(5) Close for Update.

(6) Retrieve Item.

(7) Replace Item.

(8) Term Name to ICC Translate.

6.4.1.6 Jobs Used. None.

6 4.1.7 Method of Operatio. A is the program's name (formal) for the (source) tiput,

and B i- the program's name (formal) for the (target) input.

(1) A and B are retrieved and separated into link it m name and field
name. The two field names are translated into ICC's called SF
and TF. Then, the Item List entries for these two fields are
retrieved and a check is made to assure that the fieldxi are suitable
for becoming the crlteriad fields for accomplishing linkage.

(2) Next, the term names for the two new link items are added to the
Term Encoding Table. The ICC's formn'rly aesigned to the fields
are now assigned to the link items. At connector 2A, the fields'
ICC's are modified by adding. 1. This completes TET updating.

(3) At connector IC, the Linkage Table. is positioned at end of file.
Then, two additional records are 'built for the source and target link
items and these are inserted at tie end of the Linkage Table file.
The record numbers are savedz 'or subsequent use.

(4) Next, the Item List and Ternm List are updated in parallel by inefe'ting
entries for the source and to ^get aznk items just in front of SF and TF.
These Item List entries include the Linkage Table record numbers
asbigned in (C).

(68
6-83

-4.••

(5) At connector 2E, the Segment Name List to checked. If any data C
segments have SF and/or TF as identifiers (i. e.,* the field is the
first data Item !n the ucegment), then the ' Idti-U~fte has to be
modified. ThePC of the field hasbeen changed from xto x.Iby
the insertion of the link item into the structure. When the Segment
Name List has been updated, if required, the Link job terminates.

6-84

7ý
-MAN"

Z1 g..

6-86

Aar
.1.1L -s A

"A I

X.'21

IC

6-8

6.4.2 Delet LAnK

(Job Requeý.: 7•ELFT," .4K (source), (target).

6.4.2. 1 Functional De2rition_. uiws job .: •uaks a link by removing the source and

target link items from 4h , -- :.uurtw ind by deleting the records of the Linkage Table

which pertained to this, Ar of link iLtems.

6.4.2.2 ! The job inputs ire:

(1) (source) - the term name for the source link item, qualified
if required for uniqueness.

(2) (target) - the term name for the target link item, qualified,
if required for uniqueness.

6.4.2.3 Results. The link items are removed from the structural definitio~n that is

stored in the system directories.

,6.4.2.4 Directories Used

(1) Term Encoding Table.

(2) Item List.

(3) Term List.

(4) Linkage Table.

(5) Segment Name List.

6.4.2.5 Services Used

(1) Locate IL Entry.

(2) Open for Update.

(3) Seek.

(4) Delete.

(5) Read.

(6) Replace.

(7) Close for Update.

6-87

._ -o

(8) Retrieve Item.

(9) Delete Data.

(10) Term Name to ICC Translate.

6.4.2.6 Jobs Used. None.

6.4.2.7 Method of Operation. Ain the program's name (formal) for the (source)

input and B is the program's name (formal) for the (target) input.

(1) A and B are retrieved, translated into ICC's and located in the
Item List. A check ;., made to assure that both items are links
and that they are related in a source-target pair.

(2) The Linkage Table is updated by deleting the two records pertaining
to these two Item List entries.

(3) The term names for the link items are deleted from the Term
Encoding Table.

(4) The Item List and Term List are updated in parallel by deleting
the two records pertaining to the two link items. The term names
of the fleldb subsumed by the link items are read from the Term
List and saved.

(5) At connector 2B, Linkage Table, Item List, and Term List updating
are complete, but in the Term Encoding Table the fields formerly
subsumed by the link items have incorrect ICC's. Since the link
items have been deleted from the structures, the fields must be
"promoted" by deleting the last digit of their ICC's. This is
accomplished at connector 2B.

(6) Adjusting the ICC of a field may require adjusting the IPC of the
field in the Segment Name List. At connector 2C, the SNL is
checked to see if these fields are used as identifiers for aay data
segments. If so, the last digit of the IPC is deleted. When this is
complete, the Delete Link job terminates.

6-88

•.P4

,IN

> his

6-89g

8 C4

w CC

~ll e
3

0: z

E~.

6.5 OTHER MAINTENANCE JOBS

Data security is the portion of the data protection system which protects

the system user against invasion of privacy by protecting this data against unauthorized

read and write operations.

Before read and write operations are executed, security checks are performed.

This checking involves comparison of data restrictions against user clearances as they

are recorded in the directory. The protection afforded through security checks depends

on the accuracy of the restrictions and clearances stored in the directory.

The tools provided to the Data Administrator to protect the data are a set

of maintenance jobs designed to put data restrictions and user clearances into the

directories so that they can be used for security checks on all data service requests.

6.5. 1.1 Data Restrictions. Each item defined to the system (see Define Item, Para-

graph 6. 1. 1) is assigned a security restriction level for access and a security restriction

level for modification. These SRL codes range from zero (unrestricted) through six

(highest restriction). The only system rule is that in proceeding down a branch of the

tree structure, no item may have a higher SRL than its parent.

The Data Administrator assigns the SRL codes when the Define Item job is

to L- executed. These codes go into the item List (see Paragraph 2.3) and remain

there until modified through a redefinition of the item.

6.5. 1.2 User Clearances. Before any user may run a job, he must have been identfld

to the system through a maintenance job called Add User. The input to the Add User

job includes:

(1) (user name)

(2) (user class) - department or group

(3) (priority)

(4) (clearance level-access)

(5) (clearance level-modification)

IC,

6-91

The Data Administrator assigns the CL codes from aon (lowest clearanme)

through seven (no constraints). When the Add User job is executed, the" codes go into

the User List (see Paragraph 2.8) and remain there until modified through a Delete User

job followed by Add User giving new CL codes.

All data items with SRL codes less than the user's CL code are unconditioonaly

available. If data has an SRL code of zero, all users have free access to it. User

CL code 7 has access to all data, and this code should probably be reserved for the Data

Administrator.

6.5.1.3 Conditional Access/Modification Rights. When a data item has an SRL code

equal to or greater than the user's CL code, the security check will fail unless conditional

rights have been given to allow an override of the primary restrictions.

The directory contains Access Rights and Modification Rights Tables (see

Paragraph 2.8). When a security check finds data having an SRL code equal to or

greater than a user's CL code, the information in the Access or Modification Rights

Table will be used to decide if the read or write should be permitted.

The Data Administrator allows conditional rights to certain restricted data

by certain users by putting conditional rights into the Access and Modification Rights

Tables with the following maintenance jobs:

Add Access Rights

Delete Access Rights

Add Modification Rights

Delete Modification Rights

The input parameters for these jobe are:

(1) (class) - user class, the department or group code.

(2) (1st) - or-, . ..,,re term names for the data items
(usually files) whose SRL cod" ar, equal
to or higher than the user's CL code.

6-92

2 _ -. , , • • • _ : • • . .. •_•. .. . • :_

(3) (conditional list) - one or more term names; equality isC ~qualified by a Boolean condition (e. g.,
TRANSISTOR FILE IF MFR = RCA) which
limits the rights to a particular subset
of item named.

The permits given, when these jobs are executed, are stored in the Access

or Modification Rights Table for the given user class. While the permit remains in

the table, the data security checks will pass, even though the data class has a higher

SRL than the user's CL.

6.5.2 External to Internal Data Conversion

In the dsta manipulation jobs, Add Data (Paragraph 6.2. 1), Replace Data

(Paragraph 6.2. 2), and Update Data (Paragraph 6.2.4), the source data input had been

translated into internal segmented format beforr 'e job was executed. The maintenance

jobs which translate external data into internal segmented format are classified as data

conversions. Since external data may be received from many different sources, in

many differert formats, and be recorded on different media, there will be a set of data

conversion jobs. The job request has the following form:

(job id), (string), (item),

where:

(I) (job Id) - the job name (e. g., EDL2-CONVERSION).

(2) (string) - the Job input: a string of external data.

(3) (item) - the job output: ready for use as input to Add Data.

;t

IC

L8-9

SECTION VII. UTILITY JOWb

The Utility Jo~be are divided into two major and three minor

jobs. T1he major jobs include:

(1) ftry,

(2) Condltional Re-ornat.

The minor jobs include:

(1) Conditional Search.

(2) Reforrmat,

(3) Display.

All Utility Job. are uoer-oriented and may be extended indefinitely.

7.1 UR

Job Requet: QUTERY (oocmdition), (qwmaMftr), (format).

77-1

7.1.1 Functional Description

A query is a job which consists of several distinct phases or components. In C
addition to the dialog phase, the basic query (Query job) contains the following components:

(1) Conditional Search,

(2) Reformat,

(3) Display.

It is expected that these basic cmponent jobs will support an addillonal qu-ery

capability as well as maintenance " bs with a spectrum cf user interfaces, which range

from the management-oriented dialog interface to the programmer-oriented data maintc-

nance jobs.

Input t;o the baic query consists of three user-oriented sentenres which may

exist within the data pool or which may be entered via remote console. T1+ condition

sentence is written in Boolean form and is used to identify the data items of interest in

any particular query. The qualifier and format sentence are both written in English-like

form and are used to determine the specific fields to be displayed in some desired display

format. In addition, the qualifier sentence may be -ised to restructure the desired items

before display.

Results from the basic query consist of some visual display, e.g., console,

printer, etc.

7.1.2 Inputs

(1) CONDITION, A, V

(2) QJALIFIER, A, V

(3) FORMAT, A, V

7. 3 Rpsu1ts

No outputs for the job are specified. The display constitutes the results.

7-2

7. 1.4 Directories Used

S(1) Item List.

(2) Term List.

(3) Fields File.

(4) Shadow of Fields File.

7.1.5 Services Used

(1) Open for Reading.

(2) Close for Reading.

(3) Seek.

(4) Read.

(5) Fix Item.

(6) Open for Writing.

(7) Close for Writing.

(8) Open for Updating.

(9) Close for Updating.

(10) Replace.

(11) Insert.

(12) Delete.

(13) Retrieve Item.

(14) Term Name to ICC Translation.

(15) Retrieve IL Entry.

(16) Retrieve Term List Entry.

7.1.6 Jobs Used

No Job Extensions are used.

7-3

kS

7.1.7 Method of Operation

The Query Job is entered into the system via the following Job Description: (I
Job Name: QUERY

Job Inputs: condition, qualifier, format.

Job Outputs: none specified.

Job Components:

(1) CONDITIONAL-SEARCH: condition, QUERY STATEMENT.

(2) REFORMAT: qualifier, QUERY STATEMENT, Q.jZRY ITEM.
(3) DISPLAY: format, QUERY ITEM.

The internal Job Description of the Query job may be represented graphically

as shown in Figure 7-1.

CS CONDITICN SEARCH CS CONDITIONAL STATEMENT

REFORMAT QUALIFIER REFORMAT REFORMAT ITEM

)IcPLAY FORMAT DISPLAY

DISPLAY ITEM

Figure 7-1. Query Job, Internal Job Description

7-4

From the condition sentence, the Conditional Search job develops the Conditional

BSearch statement which consists of an ICC encompasalng the umiverse of the discourse and

a list of fl-values which satisfy the condition. Alnng with the qualifier sentence, this

R-value list constitutes input to the Reformat job. From this, the desired item is fixed in

the data pocl, and data is written into it. FirAlly, the desired item is displayed as

specified by the Format statement.

7.1.7 1 Conditional Search

Job Request: CS CONDITIONAL-SEARCH: (cs condition);
(cs conditional statement).

7. 1.7.1.1 Functional Description. Conditional Search is a job which enables the pro-

grammer to find specific records in one or more classes (ICC's) which satisfy some

Boolean condition. All of these specific records belong to the universe of the discourse

which is represented by th%. lowest lev(.1 ICC to subsume all the records.

Four component jobs are needed to form the Conditional Search job. These

are:

(1) Condititn Translation,

(2) Condition Analysis,

(3) Conjunctive Search,

(4) Disjunctive Search.

A search condition is a specification, in the form of a logical or Boolean state-

ment, of the condition that must be satisfied by an item or items of the data base. The

logical statement is made up of terms, parentheses, and logical operators--, (NOT),

A (AND), and V(OR). They have the form ,o'n 6, (MA ý), or (4V), where 0 and

are either terms or statements. A term ts a primitive specification of the form PRvpEp

where P Is a field ihame (property); R is a relational operator from the set (=., <,

range); vp is a value of the field name P; and Ep (if necessary) is the ed of range value.

Given an item, a term is true for the item only if it contains the field name P and the

value of the field stands In relation I to the specified value vp(.E). In general, vp(Ep)

Sn

7-134ýn

may be considered any member of values only one of which is required for the truth of

the term. The truth of a logical statement is constructed from the ,ruth of its terms

according to the usual rules of Boolean logic.

By considering the Data Base (universe of discourse) as a set whose elements

are Items, the logical operations can be transformed into set calculus operations on the

Data Base. Thus -'-(the logical NOT) is transformed into set complementation which is

symbolized as -r; A (the logical AND) is transformed into set intersection which is

symbolized as Cl; and V (the logical OR) is transformed into set union which Is symbolized

as u. The situation is complicated by the fact that the Data Base, in addition to simple

items (fields), contains compound items (statements, records, and files) which, in turn,

contain items. The fact that the Data Base contains compound items permits it to be

viewed as a partially ordered set, with the partial ordering relation being "inclusion."

Item A is said to include item B (written A2B) if item B is an item within A (e.g.,

PERSONNEL FILE 2 PERONF , RECORD, PERSONNEL FILE 2AGE, etc.). The

inclusion relation is reflexive (A 2 A), antisymmetric (if A 2B and B_2A, then A=B), and

transitive (if A 2 B and B 2 C, then A 2 C), the necessary and sufficient conditions for a

partial ordering relation. For two Items, A and B, if the IPC of A is a head (stem) of

the IPC of B, then A includes 3.

Since the Data Base is a particularly ordered set, there is, in general, a

hierarchy of items which satisfy each primitive condition (term) in the logical statement.

That is, in one interpretation, if B satisfies a condition K, and A 2B, then A also satisfies

K. But, if B satisfies any condition, then A satisfies it in a trivial way. That is, it is by

virtue of the structure of the set that A satisfies every condition that B satisfies, in-

dependently of the condition K. Because of this, as a convention, the IPC of the smallest

(lowest level) item B that satisfies the condition is taken as the standard representation

of an item which "covers" thp condition. All items generic to B that also satisfy the

condition (by virtue of the structure of the Data Base) can be found by eliminating one or

more integers from the tail of th~e IPC of B. In general, there are cases in which A and

B satisfy K, while neither A 2 B nor B 2A. In this case, A and B are not generically

related and they satisfy K independently.

7-6

Consider a data baso with the structure shown In Figure 7-2. Item H has an

ICC of MlZR!. (ICC(H) = M3RI). For a simple fondition such as H = vh, the item

atisfying the condition has IPC's formed by giving specific values to the two occurrences

of R's in the ICC 1R3R1. Likewise, items satisfying simple conditions such as D = vd

have IPC's in the class IR1. However, for a nonprimitive condition, the situation is

slightly more complex.

Consider the condition: (H = vh A I = vi). In this case, items satisfying the

condition have IPC's in the class 1R3R, particular instances of record G. This is be-

cause G is the smallest item which contaips both H and I. The general rule, then, is as

follows:*

The items 6tisfying a logical condition are taken as members of the most

specific class of items that is generic to all items entering into the logical condition.

This class is called .Le covering item of the condition. For example, items satisfying

the condition shown in the "condition" column in Table 7-1 are members of the class

identified in the "covering item" column.

TABLE 7-1. LOGICAL CONDITIONS

Criterial
Relative Universe Covering Item Record

Condition of Discourse (Satisfying Condition) Structure

(1) I B I C(G)

(2) E B E C

(• DAE B C C

(4) DAh B C C(G)

(5) DAL A A C, K

(6) PAT J K K(O, S)

(7) PAQ J 0 K(O)

* I is sufficient to consider logical covddttls whch are a conjunction of terms.
A general condition is reduced to A disjunction of conjunctions.

7
S~7-7

22

LF F

TiFiar 72.Ty~cl at SRute 2

7-8

(The conditional search procedure is developed with use of the symbology,

definitions, and theorems of the set calculus. The Data Base is considered as a partially

ordered set in which the data items are elements. The operations of set subtraction (or

relative complementation, symbolized by A-4B), set intersection (A0B), set union (AvB),

and set complementation (-'A) are defined in terms of the logical concepts of AND(A),

OR(V), NOT("I), and the primitive undefined concept of a set membership (x is a member

of A, symbolized x e A). The set calculus definitions are given in Figure 7-3. The

notation (x I x t A } is read "the set of all x such that x is a member of A."

With the universe of discourse symbolized by the letter I, the theorem in the

set calculus shown in Figure 7-4 can be derived. (These theorems are used in the search

procedure which follows.) The definitions and theorems are illustrated by Venn diagrams.

Notice that Theorems TI through T5 convert expressions involving set sub-

traction. Subtraction from the universal set I is a costly operation since it involves the

largest set I. However, in the search strategy to be employed, it need be performed at

most once for any search condition.

In achieving this simplification, the scope of the -- I (NOT) operator in the

condition is made a single term. This is accomplished in the condition translation phase

by invoking de Morgan's Thc -em whenever the scope of "-lis a compound expression,

as follows:

"I (AVB) = --I A A-"B

-- I (AAB) = "--AV 1B

A second step in the condition translation phase is to transform the logical

condition into a disjunction of counjunctions form. This is a two-level conditional expres-

sion consisting of V (OR ts) as the major connectives and A (AND's) as the minor

connectives. (Since the scope of each-l(NO) has been converted to a single term, they

do not influence this discussion.) This form, vhich will be called the disjunctive normal

form, can be obtained from the general condit'l,:al expression by applying the theorem

AA(CVD) = (AAC) V(AAD).

7-9

Definitions Venn Diagrams

Do A {xlxcA ^

AHBAýxjx cAA7(x EB)}1

D3 An {1xcxAA xcB

D4 AtJB xjx eAVxcB r

D5o 7A x , A,

Figure 7-3. Set Calculus Definitions

Theorems Venn Diagrams

TI A = I-- A

T2 A'tB = AH-(AO B =9
T3 A v "-B =--- (B--H(A B)

T4 -- tAf -- B=lI--(AUB)

T5 -- Aus -I B = I'--j (A n B)

T6 - A=A

Figure 7-4. Set Calculus Theorems

7-10

S Applying this operation from left to right is the distribution of A over V. (Applying

the theorem from right to left would be equivalent to factoring, which is the converse of

distribution.)

7.1.7.1.2 Inputs

CD. S. CONDITION, A, V

7.1.7.1.3 Results

CD. S. CONDITIONAL STATEMENT, S, 2

ICC (UNIVERSE), H, V
R-VALUE, LIST, F

R-VALUE, H, V

7. 1.7.1.4 Directories Used

(1) Item List.

(2) Fields File.

(3) Shadow of Fields File.

7.1.7. 1.5 Services Used

(1) Open for Reading,

(2) Close for Reading.

(3) Seek.

(4) Read.

(5) Open for Writing.

(6) Close for Writing.

(7) Write.

(8) Open for Updating.

(9) Close for Updating.

(I Oj Replace.

(11) Insert.

C (12) Delete.

Aq

(13) Term Name to ICC Translation.

(14) Retrieve IL Entry.

7. 1.7.1.6 Jobs Used. No Job Extensions are used.

7. 1.7. 1.7 Method of Operation. The Conditional Search Job is entered Into the system

via the following Job Description:

Job Name: CONDITIONAL-SEARCH

Job Inputs: cs condition

Job Outputs: cs conditional statement

Job Components:

(1) CONDITION-TRANSLATION: cs condition; cs sum of products.

(2) CONDITION-ANALYSIS: cs sum of products; css, cs SCHK.

(3) CONJUNCTIVE-SEARCH: css, cs scratch list; cs disjunction,
Cs scratch list.

(4) DISJUNCTIVE-SEARCH: cs disjunction, cs SCHK, cs scratch list;
CS CONDITIONAL STATEMENT,
cs scratch list.

The internal Job Description may be represented graphically as shown in

Figure 7-5.

From the condition sentence, the Condition Translation job develops the sum

of products disjunctive normal form of the condition. With this, the Condition Analysis

job determines the ICC of each field name. specified within each conjunction of the

condition, and orders these in ascending ICC order. Along with this, the Analysis job

outputs the CA SCHK which is a list of all inconmpletely indexer' terms for the purpose

of a subsequent correlation with the data. The Conjunctive Search job intersects all

terms of each conjunction and outputs the resulting list of disjunctions. Through a inerge

of these, the Disjunctive Search lob forms the DS Conditional Statement which includes

the list of R-values acceptable . the original condition. In the event of a nonindexed

result, the appropriate terms are checked against tile data.

In all cases, the scratch list is needed for purposes of internal computations,

but may not be required in a given instance,

7-12

I. CONDITIONAL
CT CONDITION TRANSLATION CT SUM OF PRODUCTS

CONDITIONAL CAS
ANALY'SIS

CA SUM OF PRODUCTS

CSS CONJUNCTIVECS DISJUNCTION
SEARCH

CS SCRATCH LIST] GSSCRATCH LIST

DS DISJUNCTION S cDISJUNCTIVE -"DS CONDITIONAL STATE M FNT

DS SCRATCH LIST q0D SCRATCHi LIST

Figure 7-5. Conditional Search. Internal Job Description

(2

7-13

7, :.; I . ,'eqdi'ion 'Fran 1:1:1,t-ý ,1i

Job Request: CT CONOF)1ON-TIIANST,AFiON (ct conditin); (cl suni o! Prodlwts}

7. 1. 7. 1.7. 1. I Functional Description. '-rnd*t;'n translation involves twi, pDhseL:

(i) Translation of the zearch condition from parenthesized infix
operator form to parenth'sis - free suffix operator form,
and

(2) rranslation of the suffix form to the disjunctive normal
form.

The suffix translation utilizes INSCAN winth the appropriate adtion-grapi, to

translate from infix to suffix sentence form. During this process, de Morgan's Theorem

is applied to distribute any ---1(NOT) operators so that their scope is a single term. The

second phase in the condition translation consists of normalizing the search condition.

The following action is taken:

Distribute A over V to form a two-level with V (OR) as the
major connective. As a result of this process, the terms
in each conjunction form a Products File for ewvory His-
junction.

7. 1. 7.1.7.1.2 Inputs

C. T, CONDITION, A, V

7.1.7.1.7.1.3 Results

C.T. SUM OF PRODUCTS, F

PRODUCTS, F

FIELD NAME, A, V 00 => equals
VALUE, B, V 01 => greater than or equals
RELATION CODE, B, 2 * 10 => less than or equals
END OF RANGE, B, V 11 =>range
I, B, 1 (1 =>NOT

7. 1.7. 1.7. 1.4 Directories Used. ,To directories are used.

7-14

r.

>1. 7 !,'f, i 5 Scervices Used

(D Open for Reading.

(2) Close for Rheading.

ý3) Seek.

(4) Read.

(5) •pen for Writing.

(6) Close for Writing.

(7) Write.

7.1.7. 1.7.1.6 Jobs Used. No Job Extensions are used. j
7.1.7. 1. 7.1.7 Method of Operation. The appropriate action-graph is compiled with the

Condition Translation program, The graph is of the Compiler-like infix-to-suffix sentence
type.

Upon generation of the suffix forn:, the Sum of Products file is developed and

written.

7-15

7-15

7 1 7. .-7. 2 ('o0dition An!ys•1.s!

Job Request: CONDITION ANALYSIS (Ca sum of products); (vas, ca SCHK)

7.1.7.1.7.2.1 Functional Description. A search analysis is performed for each con-

junction in the cnndition, This consists of the following steps-

(1) All Field names are translated to ICC's.

(2) The ICC's are ordereu into increaMng ICC depth order.
Within each depth, the ICC's are ordered into ICC order,

(3) The S file is formed.

(4) If a field is not fully indexed, an SCHK file entry is
developed.

7.1.7.1.7.2.2 Inputs

C.A. oUMi OF PRODUCTS, F

PRODUCTS,

FIELD NAME, A, V
VALUE, B, V
RELATION CODE, B, 2
END OF RANGE, B, V
I, B, 1

7.1.7.1.7.2.3 Results

(1) C.A. S, F

T, F

ICC, H, V (0=>not Indexed
DATA CODE, B. 0 >-indexed

I, B, 1
RVIT R-VALUE

(2) C.A. SCHK, F

TCHK, F

ICC, H, V
VALUE, B, V
RELATION OF CODE, B, 2
END OF RANGE. B, V
I, B, I

7-16 I

. 7. , 7.,,? 4 I)jrecto~rie.• ",.
7 '1

-(B• Item List.

(2) Fields File.
!

7. 1. 7, 1.7.2.5 Services Used t

(1) Open for Re;ing I
(2) Close for Reading.

(3) Seek.

(4) Read.

(5) Open for Writing. I
(6) Close for Writing.

(7) Write.

(8) Term Name to ICC Translation. I
(9) Retrieve IL Entry.

7.1.7.1.7. 2 . o Jobs Used. No Job Extensions are used.

7. 1. 7. 1. 7. 2. 7 Method of Operation. The Field names are translated to ICC's.

ICC(MIN) is obtained and the following actions are taken:

(1) If ICC(MIN) is riot indexed, write T Record with null
RVIT R-VALUE and TCHK Record.

(2) If ALL values of ICC(MIN) are indexed, determine
the Relation Code. If "equals", find the particular I
value in the FVT and write T Record. If a particular
value does not exist, terminate the conjunction. The
code F or all other relation codes indicate that ICC(MIN)
is not indexed.

(3) If T .TT values of ICC(MIN) are indexed, determine the
Relation Code. If "equals", find the particular value in
the FVT and write T Record. If a particular value does
not exist or if there is another relation code, assume
that ICC(MIN) is not indexed.

(4) If RANGE valu s of ICC(MIN) are indexed, determine
the Relation Code. If "range", find the particular range
in the FVT and write T Record. If a particular range does
not exlst or if there is anothfr relation code, assume
that [CC(MIN) is not indexed.

7-17

02

4- ,

7-182

: I

"/-18-

0i

• I.
- i

7-1-

7-20

I o

/ II

"I tI

I
.;)

z}

I • -

7L-21
Z,

I

II

0

U)

U)

V
-o
0

4)

4) LI
C')

4)

C
C

�*C
4 �

Q

-4)- �L.

4)

C CI-

-� 1<

U)

7-22

~+ I

t z-

o ; 0

z\

~•
SIiU-+

-- j, (V

- +;+ + ~rmI Sk,- --

7-.3

7 I. 7.7. 3 Conjunctive Search

Job Request: CONJUNCTIVE-SEARCH (css cs scratch list);
(cs disjunction), (cs scratch list)

7. 1.7. 1. 7.3. 1 Functional Description. A conjunctive search is executed for each 'r fiW e

subsumed within the S file. This consists of intersecting the RV,±T's of all terms within

the conjunction. All R-values are assumed whenever a term is not exrcuted. The result

is a file of disjunction.

7.1.7.1.7.3.2 Inputs

(1) C.S.S, F

T, F

ICC, H, V
DATA CODE, B, 1
I, B, 1
RVIT R-VALUE, H V

(2) C..3. SCRATCH LIST, F

il-VALUE, H, V

7.1.7.1.7.3,3 Results

(1) C.S. DISJUNCTION, F

CONJUNCTION, S, 4

Icc (CONJ), H, V
DATA CODE (CON.), B, 1
I (CONJ), B, I
R-LIST, F

R-VALUE, H, V

(2) C.S. SCRATCH LIST, F

R-V6,LUE, II, V

7.1.7.1.7.3.4 Directories Used. Shadow of Fields File.

7-24

7.1.7.1.7.3.5 Services Used

(1) Open for Reading.

(2) Close for, Reading.

(3) Seek.

(4) Read.

(5) Open .cr Writing.

(6) Close tor Writing.

(7) Write.

(81 Open for Updating.

(9) Close for Upc~ating.

(10) Replace.

(11) Insert.

(12) Delete.

7. 1. 7. 1.7. 3.6 Jobs Used. No Job Extenifrns are used.

7.1. 7.1.7.3.7 Method of Operation. The R-List of each disjunction is initialized to all

R-values with I (Conj) = 0. The next T Record is read and the specified RVIT is ini-

tialized. The following actions are taken:

(1) If neither I=0, intersect the two R-value lists.
[D3: AnB]

(2) If one 1=1, intersect the two H-value lists and
subtract the result from the list with 1=0. Set
I (Conj) = 0. ET2 : A (nM7B=A ----i (An B)]

(3) If both I=1, merge the two R-value lists.
CT4 :-7An-JB = 1---i (A n n)

This process is repeated for each conjunction of the disjunction until all are

exhausted. The result is a single R-List for each disjunction.

7-25

410

- -
m /1

5:.

2: ,

UH

-- • 7-26

N 0

Qz

7-2

C4)

C..

4a

T , T

EU

7-2

S)C

C..

- I

,. 7-:I

IJ "

•.. •4

-. h

/\ <\

?-30

U. . . !

'8
'-3

C I I
0 1

0* S

0 I
9
- 0

C..

I

0

I-SI

A

Ii z

o 0G0

40

r~4~ to

0 7-32

I-0

AM(

7-7

cd4

0o
o l

7.4 4

(7. 1.7. 1.7. 4 Di sjuncti re Search

Job Request: DISJUNCTIVE -SEARCH (ds disjunctiow.) (,s Sf W
ids scratch list).
(ds COND~ITIONAL STATl 1

(ds scratch 'Ist).

7. 1. 7. 1. 7.4.1 Functional Description

A disjunctive search is executed on the Disjunction file. Trhj~

ing ICC(UNIVERSE) and merging all outstanding R --Li stt. If ne ces sa r x

is accessed and checked against the appropriate relation to pa rtJ-;cuir _w'"'I",

range). The result is a simple list of H-values. 1'

7. 1. 7. 1. 7.4. 2 Inputs

(1) D. S. DISJUNCTION, F

CONJUNCTION, S, 4

ICC(CONJ), H, V
DATA CODE (CONT), B, I
I (CONJ), B, I
H-LIST, F

H-VALUE, H, V

(2) D. S. SCHK, F

TCTIK, F

ICC, TH, V
VALUE, B, V
RELATION COD E, B,2
END OF RANGE, B, V
1, B, 1

(3) D,S. SCRATCH LIST, F

H1-VALUE. H, V

7-..35

vt7

7.1.7.1.7.4.3 Results

(1) D. S. CONDITIONAL STATEMENT, S, 2

ICC(UNIVERSE), H, V
R-VALUE LIST, F

R-VALUE, H, V

(2) D.S. SCRATCH LIST, F

R-VALUE, H, V

7. 1.7. 1.7.4. 4 Directories Used. No directories P-re used.

7.1 7.1.7.4.5 Services Used

(1) Open for Reading.

(2) C`1ce for Reading.

(3) Seek.

(4) Read.

(5) Open for Writing.

(6) Close for Writing.

(7) Write.

(8) Open for Updating.

(9) Close for Updating.

(10) Replace.

(11) Inse:t.

(12) Delete.

7.1.7.1.7.4.6 Jobs Used. No Job Extensions are used.

7-36

7. 1. 7. 1. 7. 4. 7 Method of Operation. The Disjunctive Search has the following three

phases of operation:

(1) Indexed Phase.

(2) Nonindexed Phase.

(3) Subtraction PY ase.

The Indexed and Nonindexed Phases are identical except that the Nonindexed

Phase necessitates correlation with the data. This is accomplished by transferring the

FALSý: value to the DATA indicator.

To start the task, the H-VALUE List is initialized to read FOF with I(Uj)=0.
The operation proceeds, first, with the Indexed Phase and, then, with the Nonindexed

Phase. After the next appropriate H-List is initiated, the following actions are taken:

(1) If neither I=0, merge the two R-value lists.
[D4 : AQBI

(2) If one I=1, intersect the two R-value lists and subtractI
the result from the list with I=1.

Set I(V) = 1. LT3 : Au-7 B = ---f (B -- j(A)

(3) If both I=1, intersect the two H-value lists.
[T5 : -1Au 1B =I -H(A nB)J

This process is continued until all H-Lists are ex~iausted. The result is a
single H-VALUTE List. When this is achieved, the Subtraction Phase is initiated. The

following actions are taken:

(1) If I(U)=O, exit

(2) If 10)j=1, subtract the ai-VALUE List from a list of -all.

H-values and exit. [T1 :-7A I H A]

7-37

0 -

r*1

U
!.

0 0•
27-3

\oo

It
(7-39

I-V

1:31

a cJ

7-0

0

leii

7-4 JL

U2

)al

0 4-4

z '3

7-U

I

£ A

Jo
a
0

OAI �)

a
0 0

0

U
a -f

0 I-

z. e N

I
N

7-43

... 4'

[
II

U..

Um

oJ

1 80

I I

'ft

7-'

ID

,LI

A- I

I � 4,
�-S a'

�'

a I
C -

*1 (I

i V

'9a II-I'

- I
Ii A

0
I

4�j 4
a.

is �1

-t

- {

9
-

7-47

-� -- - -.-.. �

- -- - .-. .

7.1.7.2 Reformat

Job Request: REFORMAT (reformat qualifier), (reformat statement);
(reformat item).

7.1.7.2.1 Functional Description

Reformat is a job which enables the programmer to reformat items of the data

pool through the use of some English-like qualifier. The specific data items (records)

to be mapped into the newly created structure are controlled by a liformat statement.

•'•s statement is identical in item definition to the Conditional statement of the Conditional

Search job and may, in fact, be the result of a previous Conditional Search. In those
cases where all records of an item are desired, a Reformat statement which is initialized

to read all R-values must be provided.

Three component jobs are required to form the Reformat job. These are:

(1) Qualifier Transl& tion.

(2) Extract.

(3) Restructure.

A qualifier is a specification, in the form of English-like statements, of the

iteil• structure into which one or more input items are formed. It has two major state-

ment types, both of which are necessary to specify completely any reforma&. These are:

(1) Feed Statements.

(2) Field Statements.

Feed statements define the manner in which the desired item file structure is

developed from one or more input items. A Feed statement is required for every file of

the new item. The three types are:

(1) One-to-One.

(2) Distribution.

(3) Factorizaton.

7-48

A:

(7 One-to-one Fca sWe•nnents imply that a particuiar file of the new item (or

any part of this item) is created from specified file of one or more input Items. Thus,

in the following examplt, the primed files are generated by one-to-one Feed statements:

a
b b

t I 'd
Distribution implies that a particular file of the new item is created from

more than one specified file of a single input. Thus, in the following example, the primed

file is generatied by a Distribution Feed mtatement:

a
b ... a

S9,
b

+ .C d o

IcH

+7-4

Factorization is the inverse of distribution and implies that a subsumed file of .

the new item is created without the existence of this file in any input item. To accomplish

this, the parent of the subsumed file must be created from a specified file of one input in

which a factor control field exists. A value change in this specified field generates the

subsumed file. Thus, in the following example the primed subsumed file is generated by

a Factorization Feed statement in which the field a is the factor control:

AAt

dd

Field statements define the record item structure in terms of ordered ftelu

names which qriginate in the input items. A field statement is required for every field

of the new item. The actual values that are transferred to the new item are determined

by the R-values of the Reformat statement. Thus, in the following example, fields a

and b of the first input item are merged with field x of the second Input to form a single

record of the new item:

at

7-50

LL,-

7-60

There are no restrictions to the use of Reformat except for that of parallel

input files, Parallel files are files of identical item levels within a single item. The

restriction is simply that, when parallel files constitute a single input, they may not be

merged to form fewer files of a desired item. Thus, in the following example, the

Reformat is not permitted when file I constitutes a single input:

IA

Xt

\ bb

Nevertheless, this Reformat may be accomplished if file A and file X constitute

two distinct inputs. The objective is demonstrated in the previous example.

It should be noted that there are no restrictions on parallel input files if their

respective fields are not merged. Thus, in the following example, no restriction

applies:

7-51

A A

x Xf

S x, [,

7.1.7.2.2 Inputs

(1) REFORMAT QUALI1fiER, A. V

(2) REFORMAT STATEMENT, S. 2

ICC(UNTVERSE), H. V
R-VALUE LIST, F

R-VALUE, H, V

7.1.7.2.3 Results

(1) REFORMAT ITEM (DYNAMIC)

7. .7.2.4 Directories Used

(1) I•m List.

(2) Term List.

0
7-52

S 7.1.7.2.5 Services Used

(1) Open for Reading.

(2) Close for Reading.

(3) Seek.

(4) Read.

(5) Fix Item.

(6) Open for Writing.

(7) Close for Writing.

(8) Write.

(9) Term Name to ICC Translation.

(10) Retrieve IL Entry.

(11) Retrieve Term List Entry.

7.1.7.2.6 Jobs Used. No Job Extensions are used.

7. 1. 7. 2.7 Method of Operation. The Reformat job Is entered into the system via the

following Job Description:

Job Name: REFORMAT

Job Inputs: reformat qualifier, reformat statement.

Job Outputsr: reformat item.

Job Components:

(1) QUALIFIER-TRANSLATION: reformat qualifier;
reformat k statement, reformat I list.

(2) EXTRACT: reformat k statement, reformat I list;
reformat node list.

(3) RESTRUCTURE: reformat statement, reformat node list;
reformat item.

1- 7-53

The internal Job Description may be represented graphically as shown in

Figure 7-6.

QUALIFIER
QT QUALIFIER PTRANSLATION QTK STATEMENT________}QTL LIST

EXTRACT K STATEMENT-
-EXTRACT EXTRACT NODE LIST

EXTRACT L LIST - _-_

RESTRUCTURE STATEMENT-

RETRCUR OD IS-ýPIRESTRUCTURE RESTRUCTURED ITEM
RESTRUCTURE NODE LIST--

Figure 7-e. Reformat Job, Internal Job Description

From the, qualifier sentence the Qualifier Translation Job develops the K state-

ment and the L list. The K statement contains two files each of which constitutes an input

item. Each file record contains the field name of a desired field, which is to be mapped

into the new Item. The L list constitutes an internal representaUon of the desired item

structure. With these two results the Extract job forms a detailed node list in the follow-

Ing steps:

(1) All field names are translated to ICC's.

7-54

__ __....__ _ __ _-

(2) The first input item is broken down into major nodes
where a new node is necessitated by each parallel

1C file within the input item.

(3) Each major node is further broken down into K input
item levels and L output item levels.

(4) Within every Kth level, the ICC's of each input field
are ordered in ICC order.

(5) Within every Lth level, the outpit field representations
are made to reference a (K, 1) input field representation.

With this detailed guideline the Restructure job creates the desired item in the following

steps:

(1) The item is fixed in the data pool.

(2) At the Uth major node, the input data items modified by
the R-value list are mapped into the output item structure.

(3) The above step is repeated until the major nodes are
exhausted.

I

7-55

* ,• • • •. !; .. . ,_ ... a> o'plf. a.• . , # • .*,•,'.'.*,, .. , **,*,•.•.k.-.. .. ef,,...,....

7.1.7.2.7.1 Qualiffer Translation

JobRequest: QUALIFIER-TRANSLATTON (qt qualifier);
(qtk statement), (qtl list).

7.1.7.2.7. 1. 1 Functional Description. Qualifier Translation involves two phases:

(1) Translation of the qualifier from English-like statement
form to linear algebraic form, and

(2) Translation of the linear algebraic form to the K state-
ment and L List form.

The linear algebraic translation utilizes INSCAN, with the appropriate action-

graph, to translate from English-like statement form to linear algebraic form.

In the second phase, the Qualifier Translation consists of separation of the

linear algebraic qualifier into input and output representations. The following actions

are taken:

(1) Separate all field names into one or two input files.

(2) Separate all field names by Feed statements into L
output files.

7.1.7.2.7.1.2 Inputs

Q. T. QUALIFIER, A, V

7.1.7.2.7. 1. 3 Results

(1) Q. T. K STATEMENT, S. 2

IN1 LIST, F

NAME (INI), A. V

IN2 LIST, F

NAME (IN2). A. V

(2) Q.T. L LIBT, F

FEED, 1. 6
FACTOR NAME. A. V
OUT LIST. F

NAME (OUTM. A, V

7-56I

S 7. 1.7.2.7. 1.4 Directories Used. No directories are used.

7.1.7.2.7.1.5 Services Used

(1) Open for Reading.

(2) Close for Reading.

(3) Seek.

(4) Read.

(5) Open for Writing.

(6) Close for Writing.

(7) Write.

7.1.7.2.7.1.6 Jobs Used. No Job Extensions are used.

7.1.7.2.7.1.7 Method of Operation. The appropriate action-graph is compiled with the

Qualifier Translation program. The graph is of an English-like request language to

linear operation ty.pe. Upon generation oi the linear algebraic form, the K statement

and L list are formed and written.

75

tIi

El

&

1*__

.7. 1.7.2.7.2 Extract

Job Request: EXTRACT (extract k statement), (extract I list);
(extract node list). 0

7.1.7.2.7.2.1 Functional Description. Input and output linear algebraic representations

may be merged into a detailed node specification which symbolically represents the nec-

essary linear steps in creating the output item. this consists of a hierarchy of specific

blueprints by which any oufput item can be viewed. These are:

(1) The U major mode specifications by which parallel
files are effectively separated into unique items,

(2) The K input and L output item levels of each Uth major
node, and

(3) The sequential I input and J output fields within each Kth
input and Lth output item level.

7.1.7.2.7.2.2 Inputs

(1) EX, K STATEMENT, S, 2

IN1 LIST, F

NAME (IN%), A, V

IN2 LIST, F

NAME (IN2), A, V

(2) EX, L TIST, F

FEED, I, 6
FACTOR NAME, A, V
OUT LIST, F

NAME (OUJT), A, V

7.1.7.2.7.2.3
Results

EX, NODE LIST, F

LEVEL K, F

IN1 LIST, F

IN1, H, V

IN2 LIST, F $
IN2, H, V

LEVEL L, F

FEED, I, G
FACTOR, H, V
OUT LIST, H

OUT, H, V

7-58

AAl

7.1.7.2.7.2.4 Directories Used. No directories are used.

7.1.7.2.7.2.5 Services Used

(1) Open for Reading.

(2) Close for Reading.

(3) Seek.

"(4) Read.

(5) Open for Writing.

(6) Close for ' riting.

(7) Write.

(8) Term Name to ICC Translation.

7.1.7.2.7.2.6 Jobs Used. No Job Extensions are used.

7. 1.7. 2.7. 2. 7 Method of Operation. The following actions are taken:

(1) Translate all input field names to ICC's and order these
into the INI(I) and IN2(l) column matrices through
repeated use of the FIND ICC (MIN) subroutine.

(2) At every Lth level, translate the factor name to an ICC,
form the FACTOR (L) column matrix, and translate all
field names to ICC's of the OUT (L, J) matrix in the
order in which they appear.

(3) Group all possible Input ICC's to form the next major
node of the NODE 1(U) and NODE 2(U) column matrices.
Write Node record.

(4) Determine all possible K input levels and form the IN (K. Y)
matrix of every possible input ICC. Write Level K record
and INl aud IN2 lists.

(5) Determine the L output levels and reconstruct the FACTOR
(L) and OUT (L. J) matrices by replacing their respective
elements with (K, Y) values -,*hich reference input (source.
elements) of the IN (K. Y) values which reference input
(source, elements) of the IN (K. Y) matrix. Writte Ji'' AL

record, Feed and Factor statements, and Out list.

(8) Repeat the last three steps above until all major nodes are
exhausted.

7-59
'P •-!r ~ • •- . '- '•.•-.• •, ; !..

'4 I

. I
' /i I

+ I

0 *1 I

II

-- b -0

2 -r -60

il

C i4

iUl

0

cq2

3z

xU

*4

7-61-

I-"I

04

-a° I

+ 4

7-02

o 0

i . . '• o . ÷ '. 2•

rpsk

C ~"'

Q U

ap

04

i it

Al

tq

7-63

A 7MO3

ge�

Id

110
B

I
+

p
.6

0

IW I
'4

I

0 0 0z

'1
hi p..I 6

*
U

0
7-"

4e�
(

I ii..
9
8

+

I.m

0

a
8 ra. �
-o

a

-I
+

3

-

b.

9 61 5
0 � AI�

Fe
7-65

S

Im

++

* Ail

-7-0

7--67

1 "4'6"'

I JIC)

ii'

I
al

7-48

* 44

it

7-69

++,,I

0-0

/ t _ _. . .. 4 . .. 4

C7. 1.7. 2.7. 3 Restructure

Job Request: RFSTRUCTUPE (restructure statement), (restructure Bob 110):
(restructure item).

7.1.7.2.7.3. 1 Functional Description. A node specification represents the necessarf
linear steps in creating the desired output Item. From this8 bluesrInt, the Restriac~x

job fixes the Item in the data pool. Data ts transferred to the ftem in the mannr speaft~od
by the node specification under control of the Restructure statement.

At each major node, the R-values of the Restructure statement determine the

specific input fields. For every R-value, some Lth level. data item is written. This 101,

level is oontroiled by a specified Kth level of the input Item.

7. 1.7. 2. 7.3.2 Inputs

(IN RESTR. STATEMENT, S, 2

ICC (UIERS) H, V
fl-VALUE, LIST, F

R-VALUE, H) V

(2) REST~r. NODE LIST, F

LEVEL K, F

INI LIST, P

INI. H, V

1N2 LIST, F

1N2, H. V

LEVEL L. r'

FE E, 1, 6
FACTOR. H. V
OUT LIST, F

OUT. H, V

i5

7-71

7.1.7.2.7.3.3 Results

(1) RESTR. ITEM (DYNtamC)

7.1.7.2.7.3.4 Directories Used

(1) Item List.

(2) Term List.

7.1.7.2.7.3.5 Services Used

(1) Open for Reading.

(2) Close for 'eading.

(3) Seek.

(4) Read.

(5) Fi: Item.

(6) Open for Writing.

(7) Close for Writing.

(8) Write.

(9) Retrieve IL Entry.

(10) Retrieve Term List Entry.

7.1.7.2.7.3.6 Joh3 Used. No Job Extensions are used.

7.1.7.2.7.3.7 Method of Operation. The node specification is read in its entirety and

the IN (U, K, 1), FEED (U, f), FACTOR (U, L), and OUT (U, L, J) matrices are

formed. With 'his blueprint an Item List and Term List are constructed and fixed in

the data pool.

In a4dition to the above matrices the Restru,*ure program provides storage

alloca.), for the FILE (K) and FIELD (K, 1) matrices. FILE (K) iodicatee EOF at every

Ktn level input ta which the input records Pre exhausted. FIELD (K, 1) contains an Input

field valuc for every (K. I)th input item, modified by a specific R-value.

7-72 l

At each major node, the R-values are read sequentially until exhausted. For

-(every R-value the following actions are taken:

(1) Read all input items IN(U, K, 1 Into corresponding entries
of FIELD (K, 1) until all K levels are exhausted.

(2) If FILE (U, K) indicates EOF and FEED (U, L) specifies
the Kth level, write file (U, L) EOF, decrement L, and,
after the last such Lth level, decrement K. If FACTOR
(U, L) indicates an (X, Y) value where FIELD (X, Y)
has exhibited a change in value, decrement L but not K.

(3) Determine all (X, Y) values of OUT (U, L, J) and write
their corresponding output data items FIELD (X, 'Y) until
all L levels are exhausted.

7
S"-.73

S.-

9 0

li - - - -

00

a z

7-74

- .4

+, +

o CA

7-7

,• I•• 4

<io

S.•+ 7-75

0

N.

0

x

4

+

-� t I.,

I

o 0
2 2

m
0 0

114 114 1'. 114
o 0

0

I * F
* I

o Ii

C
J �I

4)
w

�4�4

Ktip

ji .

mlP

D

7-7

• ?..77

jiG

z0

I.l,

-- .
in--

7-78

iss]•

• MO

m hit

i~ri d

7-7

i
ieW ,

7-80

!: iI;

Goi

mks

rN;

4" 7-80

C '~co

goa

, F 7 -81

|

7.1.7.3 Display

Job Request: DISPLAY (display turmat). (display item). .

7. 1. 7.3.1 Functional Description. Display is a job which enables the user to display

items which are bound to this job. An optional English-like Format statement allows

,aide flexibility in the display characteristics.

There are three phases to the Display job. These are:
(1) Format Translation,

(2) Disriay Analysis and Heading,

(3) Display Data.

The format translation distinguishes three major statement types. These

include:

(1) Header,

(2) Data,

(3) Eject.

A Header statement provides tze user with the capability of fixing a constant heading on

each display. The Data statement consists of the field names of those fields which the

user desires to display. An Eject statement indicates the subsumed levels of the data at

which the user desires to initiate a new display.

From the field names of the Data statement, the Display program analyzes

the corresponding item structure and generates a fixed subheader. This consists of a

horiontal listing of the field names beneath corresponding file names. In t his manner

the subneader displays the structure of the subsequent data. Thus, in the following

example, Item A is displayed in its entirety:

7
7-82

a

bI

EC

J

d

A)

a b c X subheaderj

c d x

Va Vb Vc Vd V

VC ~Vd V

7-83

. thc ',,Howinz deispLAy onIV selected fields, -f Item A are dis;layed:

Ai

C X subh-ader

d x

Vd VX

Vd Vx
data

Vd Vx

Vd V×

Finally, in the third phase, data is displayed. If an Eject statement exists.

this is reflected whenever the data requires.

7.1.7.3.2 Thputs

(1) DISPLAY FORMAT, A, V

(2) DISPLAY ITEM (DYNAMIC)

7, 1.7.3. 3 Results. No outputs for the job are specified. The display itself constitutes

the results.

7. 1.7.3.4 Directories Used. Term List.

7.1.7.3.5 Services Used

(1) Open for Reading.

lo•t .- wt netntting.

(3) Seek.

(4' Read.

(5) Retrieve Item.

(6) Term Name to ICC Translation.

(7) Retrieve Term List Entry.

%7-84

I.1.7. 3,6 Jobs Used. N(Job Fxtensions are used.

7. 1.7.3, 7 Method of Operation. The Format statement is read and translated Into

Header, Data, And Elect statements thrnugh the uer of Inscan (irt'r to Section VITi, The

Inplit Scanner). The Header is fixed in the DISPLAY (H, W) buffer and the field namr-

of the Data statement are translated to ICC's of the ICC (1) matrix. ICC (MIN) is obtained,

and the following actions are taken:

(1) If ICC(I) is not subsumed within the present file, form
a new node and fix the file name in the DISPLAY (H, W)
buffer.

(2) Repeat the above step if ICC (1) represents a more
embedded level.

•3) Transfer ICC (P, to IN (L J) and W to OUT (L, J), where
J is the jth field at the Lth level and W is the horizontal
position of that field on the display.

(4) Fix the corresponding field name in the DISPLAY (H, W)
buffer.

Upon fixing the subheader in the DISPLAY (H, VI) buffer, the data is accessed

and the following actions are taken:

(1) Read the jthi field at the Lth level into the DISPLAY
(H, W) buffer, where W is determined by OUT (L, J)
and H is the line number.

(2) Repeat the above step until all levels are exhausted and
the line is complete.

(3) If either the display buffer is exhausted or EOF is
reached with EJECT (L) true at that level, display the
bliff, " contents.

7-85

ioI

.1I

-4

7-8

i oL 804

>1 c

Sz

4..4

7-87

Ht

-;I.

', 0xZ

zt

AA

(1,,

? -88

c 0

7-89

"•0i

fa

7-90

P 7.2 CONDITIONAL REFORMAT

Job Request: CONDITIONAL-REFORMAT (condition), (qualifier); (item),

7.2.1 Functional Description

Conditional Reformat is identical to the Query job except ,fo- the Display Com-

ponent. The dynamic item generated by the Refowiat Component coustitutes the job

output. In this manner, items within the data pool may be conditionally reformatted to

satisfy any item description.

7.2.2 Inputs

(1) CONDITION, A. V

(2) QUALIFIER, A, V

7.2.3 Results

ITEM (DYNAMIC)

7.2.4 Directories Used

(1) Item List.

(2) Term List.

(3) Fields File.

(4) Shadow of Fields File.

7.2.5 Services Used

(1) Open for Reading.

(2) Close for Reading.

(3) Seek.

(4) Read.

(5) Fix Item.

(6) Open for Writing.

(7) Close for Wr!ting.

£ (8) Write.

7"-91

.,~ 2

(9) Open for Updating.

(i0) Close for Updating.

(11) Replace.

(12) Insert.

(13) Delete.

(14) Term Name to ICC Translation.

(15) Retrieve IL En'-,,

(16) Retrieve Term List Entry.

7.2.6 Jobs Used

No Job Extensions are used.

7.2.7 Method of Operation

The Conditional Reformat job is entered hito the system via the following Job

Des': iption:

Jo'o Name: CONDITIONAL-REFORMAT

Job Inputs: condition, qualifier

Job Outputs: item

Job Components:

(1) CONDITIONAL-SEARCH: condition; conditional re'formlat statement.

(2) REFORMAT: qualifier, conditional reformat statement- item.

The internal Job Description may be represented graphically as shown in

Figure 7-7.

I
U

'1-92

CS CO.NDTTIONAL
C3 CONDITTON Cm ONDITIONAL STATEMENT

SEARCH

REFORMAT QUTALIFIER-'N
REFORMAT PREFORMAT ITEM

RE FORMAT STATEMENT

Figure 7-7. Conditional Reformat Job, internal Job Description

7

7-93

(

SECTION VIII. THE INPUT SCANNER

The Input Scanner is a powerful, high-level, general-purpobe routine. The

inputs to Inscan are the input string to be interpreted and the action-graph defining the

syntax and actions to be taken. The results from Insean consist of either a data exit

plus an output list containing pointers to the parameters generated at action-points or
an error exit.

The use of a generalized Input Scanner can be seer, to be a powerful tool in

allowing the system to broaden its language handling capability economically. It allows

the system to introduce (with no changes in the Input Scanner) a qucry language or other

user-oriented and specialized languages.

The advantages to the programmer in generating an action-graph are that the

graph can be written directly from the syntax. This philosophy has been rigorously

maintained in the more detailed design which follows.

8.1 ACTION-GRAP)HS

Action-graphs are first assumed to be loaded in their named locations. If

necessary, provisions for effectively accomplishing this may easily be added at a later

8-1

-. *7= , . .; ; .= •

date. Second, the word length of every machine address is assumed to be 18 bits, of

which the last 12 bits can specify- a machine address. This specific assumption may

be altered as a function of the machine ward,

There is a one-to-one correspondence between an action-graph symbol as

drawn in graph form, this symbol as entered Into the mac-4ne, and a machine word.

The machine entries for any one graph must be sequential in the manner in which they

are drawn, except where indicated. Each of these entries is comprised of a 6-bit shape

code S(b) and 12-.bit content C(b), always a machine address, loaded to location b

(Figure 8-1).

LOCATION SHAPE CODE AIPDRESS

b S(b) C(b)
6 12

graph
name I

graph
name + I

graph I
name + 2

1I

Figure 8-1. An Action-Graph

The shape codes and their corresponding action-graph definitions are listed

in Figure 8-2.

If the action-graphs are compiled in symbolic machine language, each entry

can be written symbolically as:

Symbolic Location 1 Code, Symbolic Address

This statement Is entered into the machine as an address constant.

The advantages to this technique are simply that the programmer can describe

an action-graph in a symbolic language for which a compiler must already exist.

8-2

Implementation problems should be minimized by the fixed, single, machine-

word entry.

Graph Symbol Code Definition

S1 Symbol Code: a is the location
of some number Jf basic input
symbols.

S2 Variable Code: A is the name
and location _o an action-graph.

-0.S3 Ciooice Code: b is the location
of a branch entry, should the

b next sequential entry fail.

Sa 4 Action Code: a is the name and
location of a closed subroutine.

1' S5 Terminate Co 'e f
S6 Branch Code: b is the branch

b entry location.

Figure 8-2. Shape Codes

8.2 ADDRESS LISTS

Design of the Input Scanner requires two address lists of indefinite length. If

a level depth.ls assigned to a specific action-graph, the level depth/+ 1 is assigned to

any graph (including itself) Antered irom the first. Thus, the same grape may have

many levels of execution. The Input Scanner maintains a history of each level depth in

the address lists (Figure 8-3).

8
8-3

LOCATION NEXT ADDRESS LINK ADDRESS

AP 0() L(f)
0
1

2
1
1

Figure 8-3. The A.1,ss Lists

If the Initial level depth is zero, the level depth / defines the relsttive location

of each entry in the address lists as well.

The P(J) entry contains the address of the next sequential location in some

action-graph at level depth- whenever the present level depth is greater than!. The

L (1) entry contains the address of a branch (link) location at level depth I.

8.3 INSCAN

8.3.1 Functional Description

Inscan (refer to Figure 8-4) scans an input string, such as a job request, job

data, or external format data, and, in concert with an action-graph, it checks for the

syntactic acceptability of the input string and controls the subroutines which take the

actions specified by ,he action graphs. For example, in the case of a job request, these

actions are normally the preparation of parameter-list structures for the job specified.

8.3.2 Inputs

The inputs to Inscan a~e the input string to be interpreted and the name of

the action-graph.

8.3.3 Results

The results from Inscan consist of either a data exit plus an outpuL 1ist con-

taining pointers to the parameters generated from the action codes or an error exit.

8.3.4 Indicator Cells Required

(1) b U the location of the next action-graph entry.

8-4

I !

b*l-pb-1-b_Cb CM-OIC

zZjb

a+ I-WI-a 141)-bE, ý I
TT F

T T
(C) Uh 10 1.0 7

8-81

T
13

3-82 b P
C-a-b

-- 8-83 C L41) A

0 1

LAnk to
N

D & Return

1.0 pd) -0. bsa H :-14 Dok
T

T (0-0 r

;T*r

8.86 C-w b AD

Figure 8-4. Insom Flow Chad

(2) E the relative location (level depth) of the address
list entries.

(3) a - the relative location of the current input symbol.

8.3.5 Tables Read

Action-Graphs.

8.3.6 Tables Modified

None.

8.3.7 Method of ueration

(1) The input so•'ng""je is scanuned with an action-graph r.
The action-graph name is loaded into cell b, indicating
the location of the next graph entry; the level depth
indicator I is made zero; the input symbol pointer a7

is made 1, pointing effectively to the first input symbol.

(2) The Pth level depth branch (link) address L (1) is made
empty, indicating that no choice is available should an
entry at this level fail.

(3) The shape code S(b) is brought into S and the address
C(b) is brought into C. Cell b is incremented to the
location of the next sequential entry in the action-graph
and the following action is taken:

(a) If S = S1 (Symbol Code), test if the input symbol
at address a equals the action-graph symbol at
address C. If true, increment a to the next input
symbol and return to (2); if false, load the branch
address L(1) into cell b, indicating the next graph
entry. If no choice is available at this level (L(Y)

is empty), back up to the previous level.

(b) If 0 = S2 (Variable Code), remember the next graph
entry of the current level depth in P(J), increment
the level depth Z, make address C the next graph entry,
and roturn to (2).

(c) If S = S3 (Choice Code), remember the branch address
C in L(I) and return to (3).

(d) If S = S4 (Action Code), execute the closed subroutine
at address C and return to (3).

8-..

8-8

(e) If S = S5 (Terminate Code), test if level 6epth is
zero. ,f true, exit; if false, decrement the level
depth _1, recall the)ocation of the next entry in
this graph from P(i), and retura to (3).

(1) If S = S6 (Branch Code), branch to address C and
return to (3).

8.4 INSCAN EXAMPLES

Figure 8-5 is the action-graph for a language called JM, whose acceptable

input strings consist of a string of JOHN's followed by the same number of MARSHA's.

The graph Is first shown in graph form. The graph is then shown in symbolic code as

it would appear to the language compiler. A sample input siring is now considered to be:

JOHN JOHN MARSHA MARSHA

The final diagram gives a photographic view of the working cells as Inscan

scans the Input string.

The S-entry describes the machine state as Inscan switches on the shape code:

The S-action describes the corresponding machine action.

Each machine action is arbitrarily numbered (#) and corresponding comments

are given below:

(1) The machine is initialized.

(2) The shape code is the symbol code. The Rymbol JOHN is
equal to the graph symbol. Point to the next input symbol.
Remove any branch address entry at the current level
(No Back-Up Condition). Advance.

(3) The shape code Is the Choice Code. Remember the branch
address JM + 4 in L(O), the zero level depth entry of L(I).
Advance.

(4) The shape code is the Symbol Code. The symbol JOHN is
not equal to the graph symbol MARSHA. Recall the branch
address from L(O), and rc-iove this entry. Advance.

(5) The shape code is the Variable Code. Remember the next
sequential enL of this graph in P(O). Increase the level
depth, and branch to JM. Advance.

'8-7

I '

/1

(a,) Symbolic Code

3M Si, [John]
S3, JM2

JM1 S1, [Marsha]
S5

JM2 I 2, JM
S6, JM1

(b) Input String

(1) JOHN (2) JOHN (3) MARSHA (4) MARSHA (5) -

(C) Inscan Operation

S - Entry - S - Action

b S c #1 P(I) L(/) b a

1 0 0 3M (1)
JM+ 1 S1 [John] 2 0 0 (2)
JM+2 S3 JM+4 3 JM+ 4
JM+ 3 S1 [Marsha] 4 0 JM+ 4
JM+5 S2 JM 5 1 JM+5 3M
JM+ 1 S1 [John] 6 0 (3)
JM+2 S3 JM+4 7 JM+4
JM + 3 S1 [Marsha] 8 0 (4)
JM+4 S5 9 0 JM+5
JM+6 S6 JM+2 10 JM+ 2
JM + 3 Sl [Marsha] 11 0 (5)

Figurm 8-5. lwcan Example

8-8

I:

(6) The shape code is the Symbol Code. The symbol JOHN
is equal to the graph symbol. Point to the next Input
symbol. Remove any branch address entry at the current
level. Advance.

(7) The shape code is the Choice Code. Remember the
branch address JM + 4 in L(1). Advance.

(8) The shape code is the Symbol Code. The symbol
MARSHA is equal to the graph symbJol. Point to the
next input symbol. Remove the branch address entry
at the current level depth 1. Advance.

(9) The shape code is the Terminate Code. The level depth
is not zero. Decrease the level depth. Recall the next
sequential entry at this level from P(0). Advance.

(10) The 3hape code is the Branch Code. Branch to JM + 2.
Advance.

(11) The shape code is the Symbol Code. The symbol MARSHA
is equal to the graph symbol. Point to the next input
symbol. Remove any branch address entry at the current
level. Advance.

(12) The shape code is the Terminate Code. The level depth
is zero. EXIT.

Figure 8-6 Is the action-graph of a language called S (Sentence). It is the

graph of the Ifix to Suffix Operator Translator intended for use in the system. The

necessary variables T (Term) and A (Alpha) are also shown.

The entire graph is then shown in symbolic code. A sample input string is

now considered to be:

a LlV--..:- c).

The resultant parameter list when this input string waa desk-checked appeared as:

a"Ib cA-'rV.

C
8-9

x x

F-4 x4
u~u~~2 ~-. *- *a a a4

II.

8--

'SECTION IX. THE DIALOGUE PROCEDURE

9.1 INTRODUCTION

This appendix presents the detailed design of the Dialogue Query, a system

job in DM-1, describes fl- dialogue procedure, and specifies the programs of the

Dialogue Query job by me-,-.s of flowcharts and descriptions. The dialogue pre-,edure

provides a multistage interchange of information between the DM-1 data pool and an

inquirer at a Query Response Communications Console (QRCC). Through console dis-

plays, the dialogue programs guide the user to select the attributes which describe the

object, event, oi process in which he is interested, and to specify the properties which

identify the individual data values relevant to his information need. Once defined, the

need may be satisfied by the DM-1 query processors, which retrieve, restructure, and

display the pertinent data.

9-1

9 .1.1 Need for a Dialogue

The DM-1 data pool is a large, complex structure that contains data on many

facets of an overall application. A user with a need for information from the data

pool cannot be expected to be familiar with the entire structure of the data pool and the

detailed interrelationships among the various items of data. A dialogue with the

DAI-1 system informs him of the information which is available and shows him the

relationship of the data on his subject to the other data maintained by the system.

The inquirer who approaches the data pool is like a researcher p, rforming

a search in a library. The researcher is rarely able to specify in advance the precise

information he seeks. Very often, he is unaware of the precise nature of the available

information. He has a vaguely formed idea of his information requirement. Perhaps

he begins by searching a subject index to determine the names of books which deal

with his subject. Each book he reviews leads him to other sources and nar ,-:,ws his

search. He applies his judgment in each situation to d-fine his next step. His infor-

mation requirement is never really specified until the search is completed.

Through a dialogue with the DM-1 system, an inquirer is provided with

information he can use on the way to defining his need. He is presented with a generic

set of names for the categories of information in the data pool. He selects a category

for deeper probing, and he is presented with the next level of detail. He is constantly

in a position to apply his judgment in relating his need to the available information.

His information requirement is not defined until he finishes the dialogue. By then, the

system has developed, internally, a formal statement identifying the subject of his

query and the logical condition which must be met for retrieval to take place.

The dialogule procedure relieves the user of concern with the rules of

conditional logic. It may be used by an inquirer who knows nothing about the centents

of the data pool. Thus, it meets the need for making the data pool available to a wide

audience with little or ro training in the languages or mechanisms of the system.

9.1.2 The Dialogue Principle

The dialogue procedure involves the interactio:. of the inquirer and the system

in focusing-in on the data items pertinent to the inquirer's need by progressive en-

1. : r¶:'•mLS of the scale of detail. A small-scale representation of a large area of the

Best Ava'11able Copy

data pool is displayed by the system. The inquirer selects a smaller area, and that

area is presented in a larger scale for further probing. When the inquirer encounters

I1I

an item whose Value in particular cases would satisfy his !nformation need, the system

adda the Item to a developing list of desired attributes. Whenever the inquirer ts

finished with the m-)re detailed display in any area, the larger area which contains it

is presented again in a smaller scale. This allows the user to investigate another

area in more detail.

When the inquirer finishes defining the relevant attributes of the object of

his interest, he ia offered the opportunity to specify limiting properties which define

the particular cases for which he wants the selected information. For example, he

might have selected the name and population as the things he wants to know about

cities; he might now specify that he is only interested in cities in New York, New Jersey,

or Pennsylvania which have a population over 100, 000. The homing-in process occurs

again and the inquirer selects items which define the particular cases. When an item

is selected, the system displays ranges of values, thus permitting tp e user to select

the values which define the desired poperty. If values for the selected item are not

available (the field is not indexed), the system displays an example and asks the user

to key-in the appropriate values.I

After a properiy is specified, the user indicates whether he has more

limiting properties to specify. If he does, the process is repeated. The user is also

given the opportunity to specify alternative properties. When he is finished, a full

statement of the information specification is presented. He may modify it or use it

to obtain the results.

Throughout the dialogue, the uuer's participation is limited to making a

choice among the alternatives presented to him wherever possible. The alternatives

are presented in digestible groups (usually eight) for his review. This keeps the

process simple, yet provides for focusing rapidly (logarithmically) on the area of

interest.

9-3

ThogottedaouteueV priiaini iie omkn

9.2 THE DIALOGUE IN DM-1

The Dialogue Query is a jcb in the DM-1 system. It is initiated by a DM-1

job-run request; it uses the system service routines and the information in the system

directories and interfaces with other system components. The dialogue procedure

uses the structural organization of the DM-1 data pool to thread through its series

of displays. It relates to the DM-1 Query job, because the object of the dialogue is to

develop a formal query which c.n be processed by the Query job. The dialogue proce-

dure is also useful in relation to other parts of the DM-1 system. These relationships

to the DM-1 system are discussed in the following paragraphs.

9.2.1 Use of the Data-Pool Structure

The key element in the dialogue procedure is the organization and structure

of tha DM-I data pool. The data pool is basically a tree structure. It i a single item

with a series of subitems emanating from it. Any of these subitems may, in turn,

contain more subitems, and so on, until terminal items (fields) are reached.

9
9-4

iI4

aThis aspect of the DM-1 data pool is used to partition the data into

applicable and nonapplicable subsets with each user decision. The DM-1 directory

is the guide to the hierarchical structure of the data pool; it shows an incremental

increase in detail at each level in the hierarchy. The dialogue procedure uses the

directory in developing the displays and determining which items to display, based

on the user's selection. No reference to the data is required.

9.2.2 Object of the Dialogue Procedure

A specification of information in the data pool contains two elements; the

names of the items which L,,rry the information and the conditions which define the

value occurrences which are significant. Each of these elements relates to an entity

which is described by the information. The object of the dialogue is to determine

the names of the relevant items and the conditions which define the pertinent entities.

Suppose that an inquirer needs information about transistors. This makes

transistors the subjeut of the inquiry (entity). There are many kinds of information

about transistors. The inquirer may be interested in their type designator and power

rating. These are the attributes which carry the information he needs (nanes).

However, he doesn't need the information for all transistors in existence. There

might be a minimum power rating and a maximum cost wh. ", will meet his needs; he

might also need a short mean-time-to-failure (conditions). . ne dialogue would permit

him to probe the area of the data pool dealing with transistors and select the type and

power rating as the desired items. Then he would be guided to specify the minimum

acceptable power rating, the mean-time-to-failure, and the maximum cost. After the

dialogue, the system has a formal statement of a query, which might look like:

RETRIEVE TRANSISTOR T7 PE, POWER RATING

IF POWER RATING > 100, AND

COST < 20, AND

MTTF > 50

9.2.3 Uses of the Dialogue Procedure

The dialogue procedure may be used to fulfill a number of information needs

with respect to DM-1. Since the product of the dialogue is a formulated query, the

9-5

T'

dialogue may be used wherever a query could be used. However, other elements

of the DM-1 also function with a condition. The identification of the individual data

items to be affected by a maintenance operation is accomplished with a condition. The

selection of data as input to a job in a job request may also be conditional. The

dialogue can be used to probe the data poxol to define the precise elements for these

conditional operatien by developing a condition with system guidance.

At the completion of the dialogue, the user is asked what is to be done with the

information developed. He may display the formulated query, proceed to the Query job,

store the query, or store only the condition. If the query is stored, the user may call

the Query job at any later time, by specifying the stored query as the indirect input.

Similarly, if the condition is stored, the user may bind it later to any job which accepts

a condition as input.

An inquirer who approaches the dialogue with the need for an answer froz6 the

data pool elects to go on to the Query job after the dialogue- He would specify that the

results of the query are to be displayed to him or printed on hard copy.

A user who wants to perform further analysis on the information he has

selected also selects the Query job as the last stage of the dialogue. He provides a

name for the information and requebLs Lhat the results be stored in the work area for

further processing. He may specify a structure for the results, or he may accept the

structure derived by the Query job from the relationships among the desired items in the

data pool. When the query is finished, the newly created item is available in the wnrk

area. It may b* bound to any job for further processing by specifying the user-assigned

name.

Anotaer user might have some new data to be added to the data pool, or he

might have some other maintenance operation to perform. If he is uncertain of the pre-

cise nodes ir the structure whieh should be aflected by the operation, he may perform

a dialogue. While determining the structure in the pertinent area of the data pool, the

user may develop a condition which define* the precise data he wishes to change. He

may request that the condition be stored with an assigned name. After the dialogue,

the user may call the appropriate maintenance job and refer to the condition by name.

k. •:

9-i

•L m m __

These examples show the range of uses for the dialogue procedure. Its

primary value is to help the lay user of the system formulate a specification of his

information needs. But It may be used for other pirposes, ranging from a review of

the structure to the development of a private file for analysis.

9.3 THE DI' LOGUE PROCEDURE

9. "3.1 Structure of the Dialogue Query

Notification that a dialogue is to be performed is made by a standard DM-1

job-run request, which is inserted at the console. The Dialogue Query job is called into

the processing system, and it controls the communication with the console, the reading

of the keyboard inp'its, and the preparation of displays. The Dialogue Query job is per-

formed as five distinct steps. These are:

Phase 1

(1) Selection of Relevant Items

(2) Display of Selected Items

rhase 2

(1) Specification of Limiting Prt/peres

(2) Display of the Condition

(3) Selection of the Output Process

4-8

, The following description explains the overall structure of the dialogue process and

emphasizes what +he inquirer is trying to accomplish in each step. The dialogue facilities

available to the user are described where applicable. The discussion is presented under

the headings of the five distinct steps of the dialogue query.

9.3. 1. 1 Phase 1: Item Selection Phase. The first phase of the dialogue procedure

guides the inquirer in selecting those items whose value or content he wishes to

examine. There are two major steps involved in this phase.

9. 3.1. 1. 1 Step 1: Selection of Relevant Items. The selection process is a step-by-step

dialogue with the DM-1 system in which the user selects items of interest fromr screen dis-

plays. The initial display made to the user at the start of the dialogue will contain up to

the first eight items subsumed by the highest node. If there are more than eight items,

an "ADDITIONAL" selection will be offered on the screen display. The user may select

an item by indicating its number; he may choose "ADDITIONAL"; he may depress the

OPTION button; or he may choose to press the NONE button.

(1) If he selects a nonterminal (not a field) item, a new
display of up to the first eight items subsumed by the
selected item will be made. If there are more than
eight items, an "ADDITIONAL" selection wiJ be
offered.

(2) If the user selects a terminal item, It will be stored,
and the same screen display Will be reissued, with the
exception that the previously 6elected item will be
indicated.

(3) If "ADDITIONAL" is chosen, a display of up to the
ncxt eight items of the highest node are made. The
'PRIOR" selection is added to the screen, since there
are prior items on this node, and, U1 there are also
additional items, the "ALDITIONAL" solection is
added to the display.

(4) If OPTION is selected, a display of the available
options is made. The user may select an option or
NONE. If NONE is selected, the last screen dis-
play of the items of the present node is redtsplayed.
The only option at this stage of proc-uselng is the homo-
graph option. The term homograph 6, used to indicate
that there are items in different areas of the data

B 9--9

structure with the same name. If the user selects
"HOMOGRAPH," the last screen display of the items
of the present node will be shown. The user selects an
item, and a screen display is made of all parent-node
names for items with the same name as the item selected.
The user may now choose one of these names. This will
cause a new display of up to the first eight items subsumed
by the selected item. If there are more than eight items,
an "ADDITIONAL" item will be offered.

(5) If the user initially selects NONE, he indicates that he
does not have any interest in any of the major nodes of the
data base. Therefore, the first step of Phase 1 ends, and
the dialogue proceeds to the second step.

Each time the user steps to a different level of the structure, a display offering

him a choice of items is developed. The user may select an item; he may choose

"ADDITIONAL" or "PRIOR" if they are available; hc may select OPTION; or, he may

choose NONE. All steps basically work the same as with the first display. However,

if "PRIOR" is selected, the previous eightýUems of this node ase displayed. If these are

not the first subiterms, the "PRIOR" selection is offered again; since there are

"ADDITIONAL" items, this selection will be added. If the NONE selection is made,'

the user indicates that no Items on this level are of interest. Therefore, tf there is a

higher level, up to the first eight items subsumed by the higher node are shown, with,

if necessary, an "ADDITIONAL" selection. If, however, the current display is the highest

level, the user has stepped through the data base to the point where he feels that he has

made all of his Phase 1 selections. This ends the firs, itep of Phase 1, and the dialogue

proceeds to the second step.

9 3. 1.1.2 St Dsplay of Selected Items. The disa lay of all Phase 1 iielected items

allows the user to modify the selections and determine what he wishes to do with his choices.

The display will exhibit i.11 Phase 1 selections in a structural format. That is, all selected

items will be shown in an indented format so that the jubsumed relationships are quite

apparent to the user. If no Pese 1 selection were made, this fact will be shown to the user.

After the inqlIrer depresses CO'TINUE, a display is made requesting selection of the

next stup.

(1) The user may select from two steps if there were no
Phase 1 seclections, namely, restart of Phase 1, or transfer
to Phase 2. If, however, there were Phase 1 selections,
the user may select from four ,teps, namely, the above two

9-10

steps and the additional steps of depressing OPTION
or printing a copy of all Phase 1 selections. A description
of each of these termination steps follows:

(a) If restart Phase 1 is selected, all selections are
erased, and the entire selection process is re-
started at the first step of Phase 1.

(b) If a transfer to Phase 2 is desired, the user wishes
to give a set of conditions. These conditions might
be used to narrow the search for Phase 1 selections,
or, if no Phase 1 selections were made, Phase 2
will develop a condition that can be stored for use in
another job. In any case, the dialogue proceeds to
the first step of Phase 2.

(c) If OPTION is chosen, a display of available options
is made for the user's choice. The user may select
from the Delete-Item option, the Add-Item option, and
the Redisplay of all Phase 1 Selections option. The
Delete-Item option will display all Phase 1 selections,
and it will allow the. user to delete any items he
wishes. Upon conclusion, the user is again requested
to select the next step at (1). The Add-Item option
returns control to the first step of Phase 1 so that
further selections can be made. The Redisplay
Phase 1 Selections option will cause a display of all
Phase 1 selections after a return to the beginning of
the second step of Phase 1.

(a) If a request for the printing of a copy of all Phase 1
selections is made, this service is provided. At
this point, the Dialogue Query job terminates.

9.3. 1.2 Phase 2: Condition Specification Phase. The second phase of the dialogue

is concerned with the specification of a set of logical conditions which will restrict

the sarch. There are three major steps involved in this phase.

9.3.1.2. 1 Step 1: Specification of Limiting Proiertles. The specification of limiting pro-

perties begins with a selection process quite similar to that of Phase 1; however, the items

selected in this phase are items for which the user will select values so as to create a

condition. The initial display and th- displays that follow are similar to those in Phase 1.

9S

The differences occur when OPTION is selected, when no selections are made from the

highest display, and when a terminal item is chosen.

(1) If OPTION is selected, the available option, namely,
redisplay of all Phase 1 selections, is offered. When
selected, the display will take place, and when the
user depresses CONTINUE, the display which was
shown when the OPTION request was made is re-
displayed. At that time, another selection can be made.

(2) If NONE is selected, and if the highest level of the
structure is currently displayed, the user indicates that
he has selected all desired Phase 2 items. The dialogue
proceeds to the second step of Phase 2 to display the
total condition to the user.

(3) If a terminal item (field) is chosen, the user is requested
to supply values and a relationship (-, < , ,) between
the field and each value. If the field is indexed, that is,
if the system has a list of values of the selected field,
they are displayed in a digestible form, and the user may
select as many as he wishes, supplying a relation
selection for each immediately after a choice. The user
may have to (if the field is not indexed), or wish to (if
the field is only partially indexed), key-in one or more
values for the field. If so, a sample format is given,
and the user keys-in the values. The relations are
indicated in much the same manner as for indexed fields.
When the user specifies that he wishes to impose no
further restrictions for this field, he is asked if he
wishes to narrow or broaden the search.

(a) If the search is to be narrowed, that is, if the
user wishes to select other fields for specification
of values, the last display of the item structure is
redisplayed, and the user may make further
selections.

(b) If the search is to be broadened, the user wishes
to impose an entirely new condition. The dialogue
proceeds to the first step of Phase 2.

(o) If neither narrowing nor broadening !s desired,
the user has supplied all Phase 2 selections, and
the dialogue proceeds to the second step of Phase 2
so that the user may see all of his Phase 2 choices.

9-12

LI

9.3.1.2. ' Step 2: Display of the Condition. The display of the condition step will allow.the user to check if the evolved condition meets his criteria. After the display of the total

condition, the user can specify that the condition is satisfactory, the condition is to be

narrowed, or that the condition is to be broadened.

(1) If the condition is satisfactory, that is, if the user feels
that he has chosen all conditions, the dialogue proceeds
to the third step of Phase 2.

(2) If the condition is to be narrowed, the user determines
which term of the condition is to be affected, and the
dialogue proceeds to the start of Phase 2.

(3) .If the condition is, .be broadened, that is, if an alter--
native condition . be evolved, a transfer to the start
of Phase 2 is made, with the appropriate information
concerning the fact that this is a broadening requ ,t.

9. 3. 1. 2. 3 Step 1: Selection of the Output Process. This step allows the user to specify

what he wishes to do with the Phase 1 (if any) and Phase 2 (if any) selections he has made.

(1) There are four conditions that determine which output
processes are available:

(a) If there were no Phase 1 or Phase 2 selections,
the Terminate process is available;

(b) If there were no Phase 1 selections, Terminate,
Tyvi, Copy of the Search Condition, Restart
Phase 1, and Restart Phase 2 are available;

(c) If there were no Phase 2 selections, Terminate,
Store Query, Query, Conditional Reformat,
Restart Phase 1, and Restart Phase 2 are
available.

(d) Otherwise, all output processes are available.

(2) A description of the output processes follows:

(a) Terminate - The job is terminated.

(b) Type Ccpy - A copy of the Phase 2 Search Condition is
produced, and the job is terminated.

(c) Store Condition - The condition is stored, and the job
is terminated.

|0

(d) Store Query - The entire query is stored, and the
job is terminated. I C ,

(e) Develop Display - The Query job is called so as to
develop a display of all items that meet the condition.
'Ihe job ig then terminated.

(f) Store Developed Item - The Conditional Reformat
job is called to retrieve the items that meet the
condition into a work-area item. The job is then
terminated.

(g) Restart Phase 2 - All Phase 2 selections are erased,
and the dialogue proceeds to the beginning of Phase 2.

(h) Restart Phase 1 - All selections are erased, and the
dialogue proceeds to the beginning of Phase L.

9. 3.2 Console Dialogue Example

The following example shows (1) how data may be maintained in DM-1, (2) what

the succession of displays shown on the console might look like, and (3) the general pro-

cedure of the statement composition.

The inquirer who prepares the statemenit at the console need not be familiar

with the features and design aspects of any mechanisms; the Dialogue Query job will make

all features available to him without his having to be concerned with them.

A relatively small data base is considered in the example. However, the im-

plications of a larger data base on the query procedure and display are obvious.

Example:

Quer The inquirer wishes to find the Purchase Order
Statement: (P. 0.) Number(s) of those orders which are for

GE or RCA, and for which the individual order
is greater than or equal to $10,000.

Using this ,tat: ment, which may either be prepared in writing or kept in mind, the

inquirer wuUld ideniify that the item being sought is Purchase Order Number (Phase 1);

the rest)j' the itemns fire conditions of the search (Phase 2).

leOO

'Bs

Let it be assumed that pu. lbsing data is one of the maor segments of the data

S base maintained in the system. The purchasieg information data hase is structured as

shown In Figure 9-1. it would be lnfee ible to display all elements of the actual data

structure. Therefore, a level-by-levei approach is ,mployed.

(1) Thus, wvhen the job-run request "Dialogr t'o is inserted
at the console, Phase 1 of the dialogue begins (Item
Selection Phase), and the major segments appear as in
Display 1. A request for the selection of a desired out-
put item is made.

ITEM SELECTION

Please Select Output Item Desired.

:II Puchasfing Information

j iity .Jnformation)

8 Productionorm on

DISPLAY 1

The inquirer Is first concerned with indicating tue
information he Is seeking (Purchase Order Number)
and he considers It most probable that it Is In the area
of PURCHASING INFORMATIOI kvhich he selects.

9-15

(Prcaing nfomation

1 ParrNo

3~~ Vendor1 ar No.,

VendorVedo No. 1eTht

2 V endor N ao e 4 PDesVlucr[ip t io n

9-6 Pat

I- P. 0. No.

(2) The next level in displayed (see Display 2) after the(inquirer selects PURCHASING INFORMATION.

ITEM SELECTION

Please Select Output Item Desired.

Ing Information

Part

--Purchase OrderI

Vendor

DISPLAY 2

PURCHASE ORDER is the type of item being sought, and
it is indicated by the inquirer, whereupon Display 3 appears.

(3) The user recognizes that part of the data base that contains
the item he is seeking, Purchase Order Number (P.O. No.).

ITEM SELECTION

Please Select Output Item Desired.
SPurchase Order

P.O. No.

Due Date

P.O. Value
Vendor

Buyer

DWP!.AY 3

9-17

L.

\~I
\I

He tbereupon selects the •P,. No. to indicate that
it is the item sought.

(4) A display almost identical to ihe\1q1t is made. This time,
however, the request is for an additional output item selection,
and P.O. No. is indicated as having been previously selected
in the Item Selection Phase.

ITEM SELECTION

P!,..ue Select Additional Output Item Desired.

You Have
Previously
Selected

IPurchase Order

I P.O. No.

2 Due Date

Item Selection Phase 3 P.O. Value
4 Ve..Jgr

5 Buyer

6 Part List

DISPLAY 4

The user chose NGNE, stnce he has selected all Phase I
items of interest on this level.

(5) Therefore, we advance to the next higher level in the tree
structure and request the seleotion of an addtional item.
The file PURCHASE ORDER Is indicated as having been pre-
viously selected in the Item Selection Phase.

9-18

• = _ •

S ITEM SELECTION

Please Select Additional Output Iteru Desired.

You Have
Previously
Selected

(Purchasing Information)"

Item Selection Phase 2 e Order
3 V-e-ndor 1

DISPLAY 5

Again the response is NONE, since no further
probing is required to define the desired items.

(6) Therefore, the next higher level in the structure (In this
case, the highest ievel) is redisplayed. A request for
an additional selection Is made.

ITEM SELECTION

Please Select Additional Output Item Desired.

You Have
Previously
Selected

Item Selection Phase 1 wfl

5 C.Reliability Information)

DISPLAY 6

,.

Again, NONE is the user response.

(7) As no further selections have been made from the highest
level, a display of all selected items is made, showing
structural relationship among the chosen items.

ITEM SELECTION

You Have Selected The Following Item(s):

1 Purchasing Information

2 --- Purchase Order

3 --- P. O. No.

DISPLAY 7

Since the user is satisfied with this display, and does not
wish to add or delete items, he chooses CONTINUE.

(8) A display requesting the selection of the next step is made.

ITEM SELECTION

Select Next Step:

1 Condition Specification Phase

2 Type Hard Copy And Terminate

3 Erase And Restart Item Selection Phase

4 Option

DISPLAY 8

Step I is selected, thereby Indicating that the user wishes
to go to Phase 2 to impose conditions.

9-2

(9) Phase 2 (the Crudition Specification Phase) starts with a
display of the highest node and a request for a choice for
condition specification. An indication of previously
selected items is made.

CONDITION SPECIFICATION

Choose An Item Whose Value Will Be Specified As A Condition Of
"Retrieving The Output Items Desired. Key In ITEM NUMBER or
NONE.

You Have
Previously,
Selected

Item Selection Phase 1 Purchasing Information)

5 Reliability Information

8 Production Information)

DISPLAY 9

The user's choice is PURCHASING INFORMATION, since
"he feels that the items he wishes to use as conditions are
subsumed by this node.

(10) A display of the itemo subsumed by the item selected in the
preceding display is made, with a rpquest for choice.
PURCHASE ORDER is indicated as having been a prior selection.

CONDITION SPECIFICATION

Choose An Item Whose Value Will Be Specified As A Condition Of
'.• Retrieving The Output Items Desired. Key In ITEM NUMBER or

NONE.

You Have
Previosb-
Selected

Item Selection Phase 2 Order

ImSPLAY 10

9-21- - - f

~ ___

The choice is PURCHASE ORDER, since the user wishes to
get to the subsumed items of this node. L i

(11) A display of the items of the subsumed node, with a request
for choice, is made. A previously selected item is so indicated.

CONDITION SPECIFICATION

Choose An Item Whose Valle Will Be Specified As A Condition Of
Retrieving The Output Items Desired. Key In ITEM NUMBER or
NONE.

You Have
Previously
Selected [Purchase Order

Item Selection Phase 1 P.O. No.

2 Due Date

3 P.O. Value

4 Vendor

5 our

DISPLAY 11

The user selects VENDOR, since he desires to specify
certain vendors' names to Identify the pertinent
purchase order numbers.

(12) Sine the item chosen In the last display Is a field
and siae VENDOR is a fully Indexed attribute, all
values ane displayed, with a request for choice.

9-22

II

... :

CONDITION SPECIFICATION

Plesue Choose One Of The Following Values Of:

VENDOR

I GE
2 IRC
3 RCA

DISPLAY 12

GE is chosen as a value for the condition.

(13) A display of the fcur relatonships, and the selected value
ot VENDOR is created. An appropriate message to also
displayed.

CONDITION SPECIFICATION

Please Choose One Of Ile Following Relations Between
VENDOR And The Value Specified.

RELATION VENDOR

1= = GE

3 >

4 <

DISPLAY 13

After the selection, the appropriate rlbAkutksl to placed
In th coluanm murlad "RelatiW"; that is* to the "ef of the
respective value at VENDOR. CONTINE Is thea
selected by the user.

(14) Another request for a choice of a value for VENDOR
is made. C:

St -1

CONDITION SPECIFICATION

Please Choose One Of The Follov!ng Values Of--

VENDOR

1 GE
2 IRC
3 RCA

DISPLAY 14

RCA is now chosen as .n appropriate restrictive value.

(15) A request for a relation description gives the following
display.

CONDITION SPECIFICATION

Please Choose One Of The Following Relations Between
VENDOR And The Value Specified.

RELATION VENDOR

1 =RCA

2

3 >

4 <

DISPLAY 15

Thc "=" conditions is chosen, as indicated on the display,

and the user signals CONTINUE.

Best /\va'able COP'Y

(16) Another request for a value of VENDOR Is made.

CONIITION SPECIFICATION

Please Choose One Of The Following Values Of:

VENDOR

1 GE0
2 IRC
3 RCA

DISPLAY 16

NONE is the response, since the user has selected all
values of interest.

(17) The total condition (underlined) is displayed, and a question
concerning additional restrictions is posed. A "YES" or
"NO" answer is available.

CONDITION SPECIFICATION

The Total Condition Is Now:

VENDOR = GE OR RCA

Can You Specify Additional Terms Which Will Narrow The
Underlined Part Of The Condition?

1 YES

2 NO

DISPLAY 17

The resopns is "YES", since another attribute Is to be
examined by the user.

9ý-25

(18) Since "YES" is selected as a response to the previous display,
a redisplay of the last data structure exhibited is made.
However, 'VENDOR is now noted as having been selected in

the Condition Specification Phase.

CONDITION SPECIFICATION

Choose An Item Whose Value Will Be Specified As A Condition Of
Retrieving The Output Items Desired. Key In TTEM NUMBER Or
NONE.

You Have
Previously
Selected Purchase Order

Item Selection Phase 1 P.O. No.

2 Due Date

3 P.O. Value

Condition Specification Phase 4 Vendor
5 Buyer

6 •Part ListI

DISPLAY 18

The choice for the above is P.O. VALUE, because the
user is interested in purchase orders whose values are
greater than or equal to $10, 000.

(19) Since the item chosen in the last display is a field, and
since P.O. VALUE is not an indexed attribute, a sample
format is gi,' and a request for a key-in is made.

SCONDITION SPECIFICATION

Please Key-In One Value For Property:

P.O. VALUE

The Format Of This Field Is:

$00,000

DISPLAY 19

$10, 000 is the keyed-in value for the P.O. VALUE
condition.

(20) A display of the four relationships and the selected P.O.
VALUE is created. An appropriate message is also
displayed.

CONDITION SPECIFICATION

P!easc Choose One Of The Following Relations Between P.O.
VALUE And The Value Specified.

RELATION P. O. VALUE

1 = > $10,000I

2

3 >

4 <

DISPLAY 20

After the selection, the appropriate relationship is placed
in the column marked "Relation"; that ist it is placed to
the left of the value of P.O. VALUE, and it is stored in
the CVT.

9-27

Iz

kI
(21) A request for a key-in of a value for P.O. VALUE is

issued again.

CONDITION SPECIFICATION

Please Key-In One Value For Property:

P.O. VALUE

The Format Of This Field Is:

$00,000

DISPLAY 21

The response now is NONE, since the user has specified
all conditions.

(22) The total condition (underlined) is displayed, and a qiestion
concerning additional terms to be supplied so as to narrow
the underlined part of the condition is posed. A "YES" or
"NO" answer is available.

CONDITION SPECIFICATION

The Total Condition Is Now:

VENDOR = GE OR RCA

AND

P.O. VALUE > $10,000 9

Can You Specify Additional Terms Which Will Narrow The UNDERLINED
PART Of The Condition?

1 YES

2 NO

DISPLAY 22

9-28

p!:•

"NO" is the response, since all conditions have been
selected.

(23) The total condition Is displayed, and a question con-
cerning broadent-g the condition is posed. A "YES"
or "NO" answer is available.

CONDITION SPECIFICATION

Tcal Condition Is Now:

VENDOR = GE OR RCA

AND

P.O. VALUE > $10,000

Do You Wish To Specify A Condition Which Will Broaden The Search?

1 YES

2 NO

DISPLAY 23

The user chooses "NO," since he has selected all limiting
properties for purchase orders o(interest.

(24) The total condition Is displayed, and a question concerning
further modificaticns Is posed.

CONDITION SPECIFICATION

Total Condition Is Now:

VENDOR = GE OR RCA

AND

P.O. VALUE > $10.000

Select One Of The Following:

1. The condition is SATISFACTORY
2. The search is to be NARROWED
3. The search is to be BROADENED

DISPLAY 24

9-29

Selection 1 is the choic',% since the ib ti satiefed with
the condition. •

(25) The Condition Specification P1 ;e i- .er-inlnated. A display

is made with a request for the soiectio" of 'th. next step.

CONDITION SPECIFICATION

Select Next Step:

1. Query
2. Conditional Reformat
3. Type Hard Copy And Terminate
4. Erase And Restart Condition Specification Phase
5. Erase And Restart Item Selection Phase
6. Store Query
7. Store Condition

DISPLAY 25

The user selects the Query job to retrieve the pertinent
P.O. No. 's and to display them.

9.3.3 Display Development in the Example

The example in Paragraph 9.3.2 steps through a succession of displays and user

decis•ons in a dialogue query to formulate a statement uf an information retrieval request.

This Mection describes the use of the system directories behind the scenes in developing

:be amplays, in responding to the inquirer's selections, and in developing the information

retrival statement.

The dialogue begins when the job displays the highest level of the structure.

This is accomplished readily because the highest level items have the Item Class Codes 1.1,

1.2, 1.3, 1. N. These codes are converted to the display through the system directories.

Tble 9-1 is a schemaetc of the directories for the data base (refer to Figure 9-1) used in

the example. The Item List Is the center of the directory system and other parts of the

directory are parallel to it or are linked to It. 9i

9-3O

5 TABLE 9 -1. DIRECTORY SCHEMATIC

Term List ICC leSm iast

Purchasing Information 1.1 (Statement) 813
Part 1.1.1 (File) F9 V
Part Record 1. 1.1i.R (lecord)l R, 4
Part No. 1. 1. 1.R. 1 (Field) 4,V
Vendor No. 1. 1. 1.R. 2 (Field) 144
Price 1. 1.1. R. 3 (Field) E,6
Description 1. 1. 1R.4 (Field) A, V
Purchase Order 1. 1.2 (N~e) F, V
P.O. Record 1. 1.2. R (Record) R1 6 FVT
P.O. No. 1. 1. 2.R. 1 (Fiela) 1,6
Due Date 1. 1. 2.R. 2 (Field) D, 6
P.O. Value 1. 1. 2.R. 3 (Field) As V
Vendor 1. 1. 2.R. 4 (Fiela) A, V
Buyer 1. 1. 2. R.5 (Field) Ev V GE
Part List 1. 1.2. R.6 (File) F, V R
Part List Record 1..2. R.6. R (Record) R, 3 RCA
Part No. 1.1.2. R.6. R.1 (M0eld) IV
Quantity 1. 1.2. R. 6. F-2 (Field) 1,5
Cost 1.1.2. R.6. R. 3 (Field) E97
Vendor 1. 1.3 (File) F, V
Vendor Record 1. l.3.R (Record) R, 4
Vendor No. 1. 1. 3. R. 1 (Field) 144
Vendor Name 1. 1.3. R.2 (Field) A, V
Vendor Address 1. 1.3.R.3 (Field) A; V
Order List 1. 1. 3.R. 4 (File) F, V
Order Record 1.1. 3. R.4. R (Record) Rv 2
P.O. No. 1. 1.3.R. 4.R.l1 (Field) 1,6

Rellabillty Wormatlon 1.5 (Statement) 3,4

Production Information 1.8 (aeet)815

The Item Class Code (ICC) is the key to the Item List. Since the Daloge Joob

knows the ICC Is for the highest level items, it can find the Item List entries corresponding

to those items. For ICC 1.1, the job finds from the Item List that the item is a statement

and foroi the parallel Term List that its name is PURCHASING INFORMATION. The job

looks up the type and name for each of the other top-level items and finds that ICC 1. 5

corresponds to a statement named RELIABILITY INFORMATION and that ICC 1.8 to a

statement named PRODUCTION INFORMATION. After retrieving the type and name for

each top-level item, a display is developed and written on console. The next step in the

dialogue is up to the inquirer.

In the example, the user selects PURCHASING INFORMATION as an item of

Wterest. The Dialogue job must now respond to him by displaying the items directly sub-

sumed by the selected item. Since the selected item has the ICC 1.1 and is a statement,

the subsumed items have ICC 's 1. 1. 1, 1.1.2, 1.1.3, 1.1. N. The item types can be

retrieved from the Item List since the ICC's are known. In Table 9-I, it is seen that 1.1. 1

is a file whose name is PART, 1.1.2 Is a file named PURCHASE ORDER, and 1.1.3 is a

file named VENDOR. This information is formatted into Display 2 and is written on the

console. Again the job waits for a user selection.

Now, the inquirer selects the PURCHASE ORDER file. To display its subitems,

the Dialogue job develops ti, ICC's of the subitems. Since a file was selected, the direct

subitems are the records of the file, but this is no information for the user, so the subitems

of the record are dibplayed next. These have the ICC's 1. 1. 2.R. 1, 1. 1. 2.R. 2,

1. 1. 2. R. N, since the selected file has the ICC 1. 1. 2. The information needed to develop

Display 3 is retrieved from the Item List and the Term List as before. The fields P.O.

NO., DUE DATE, P.O. VALUE, VENDOR, and BUYER, and the file PART LIST are

written on the console. The inquirer indicates that P.O. NO. is the desired item. The

choice Is saved with its record minber, and the job awaits the user's next move.

Since the user seeks no other Phase 1 items, he indicates that he % shes no

further selections on this level. Therefore, since the current display r, ntain items with

the ICCIs 1.1.2.R. I, 1.1.2.R.2, 1.1.2.R.N, we retreat to the parent node and obtain

the ICC's of the next higher level, namely, 1.1. 1, 1. 1. 2, and 1.3. By means of this In-

formation, Display 5 is created. This display will note that the PURCHASE ORDER file

has already been evaluated by the user.

9-32 I

If he wished to Investigate another branch of the structure in Phase 1, the

inquirer could select another item from Display 5 and the system would respond by display-

ing the subitems on that br,,xch. In the example, the selection of desired output items is

complete; thus, the user again indicates no selections. This develops Display 6 in a

manner s.milar to the development of Display 5, In case another branch is to be followed

from the highest level. Again, the user indicates no selections, and this signals the end

of Phase 1 selections.

For the Phase 2 p"ocess, the Dialogue job directs the user so that he may

specify restrictionp to get the - hue 1 items with the desired characteristics. The highest

level of the structure .. .±tsplayed; for example, Display 9.

Since tLe user wants to restrict the search to certain vendors, the user reselects

the PURCHASE ORDrER -1. The program responds as in Phase 1 by displaying the sub-

items. This results m Dwoxlay 11 containing P.O. NO., DUE DATE, P.O. VALUE,

VENDOR, and B13x ER. The user chooses VENDOR because he wants only those purchase

orders relaijng ti GE or RCA as vendors.

The choiev. item is an ;adexed field. This means that there is a Field Value

Table (FVT) linked to 'ts item .isr entry. (Refer to Table 9-1 where the FVT for VENDOR

is shown schematicali:'. f le D/az,)gue job responds to the user's choice by retrieving the

Field Value Table for VENDOR and displaying the values in digestible groups. The remain-

ing displays in Phase 2 are generated by using the system directories Wn a slmlilr way.

I.

9-3
- r

9.4 EXPLANATION OF LOGICAL DESIGN

The formulation of an Information Retrieval Statement is performed in two

distinct phases, each of which involves a level-by-level discourse through part of the

directory. In the first phase, the inquirer selects those items whose value (content)

he wishes to examine. In the second phase, the Inquirer specifies a set of conditions

which will restrict the search for the values he wishes to examine (items selected in

first phase). Figures 9-2 through 9-7 show the logical design for the steps explained

in the following paragraphs.

9.4.1 Phase 1: Display and Select

The inquirer selects those items whose value (contents) he wishes to examine.

(1) The highest node of the data structure is used as the
display nods to begin the dialogue. The names of its
eubitema are displayed on the console. If there are
more than eight, only the first eight are displayed.

(M) The inquirer may select an item of interest:

(a) If a nonterminal item, that Is. an item not a
field, is chosen, the display will be modified to
54ow, at maximum, the first eight available

9-34

items on the next lower node which are subsumed
by the selected item. Any previously selected
item will be so indicated.' Another selection can
now be made in Step 9.4.1. (2).

(b) If "ADDITIONAL" or "PRIOR" is chosen, the
appropriate display of up to eight additional or
prior items of the current node will be created.
Any previously selected item will be so indicated.
Another selection can now be made in Step 9.4.1. (2).

(c) If OPTION is selected, the appropriate options
will be displayed for choice. Different options will
be available at certain times within the dialogue
query procedure. A particular option or NONE
may be selected. The termination of the chosen
option will create a'display of some area of the
data structure on the console screen, and another
selection can then be made in Step 9.4.1. (2).

(d) If NONE is the choice, a display of up to the first
eight items of the next higher node will occur,.
Another selection cau then 61- made in Step 9.4.1. (2).
However, if the highest node of the data structure
is currently displayed, transfer is made to Step
9.4.2. (1), so as to terminate Phase 1.

(e) At the time of a display, a terminal item, that
is, an item that does not have any subsumed items,
may be chosen. This means that the inquirer wants
values of this item as a result of the query. Using
the same display from which this item was slected,
another selection can then be made at Step 9.4.1. (2).

9.4.2 Phase 1: Termination

Th• inquirer decides whether or not he has chosen the Phase 1 items he de-

sired, and what step should not be followed.

(1) A display of all items chosen in Phase 1 iz made.
Various options, for example, delete an item, add an
item, and redisplay all Phase 1 selections, are now
available. These can be selected by %hoosing OPTION
and then selecting a definite item from the available list
of options.

(2) A request for the selection of the next step is made. The
usual procedure is to go to Phase 2, Step 9.4.3. (1). However,
scveral other choices axe available.

1'

9.4.3 Phase 2: Display and Select

The inquirer selects items for which he will supply values, and which will

then act as restrictions on the search of Phase 1 selections.

(1) The highest node of the data structure is used as the
display node to begin this phase of the dialogue. The
names of its subitems are displayed on the console.
If there are more than eight, only the first eight are
displayed. It should be noted that on any display, pre-
viously selected items will be so Indicated; i.e.,
Phase 1, Phase 2, or Both Phases.

(2) The inquirer may select an item of interest:

(a) If a nonterminal item is chosen, the display
will be modified to show, at maximum, the
first eight available Items subsumed by the
selected item on the next lower level. An, ter
selection can then be made in Step 9.4.3. (2).

(b) If "ADDITIONAL" or "PRIOR" is chosen, the
appropriate display of up to eight additional or
prior Items on the current level will be created.
Another selection can then be made in Step 9.4.3. (2).

(c) If OPTION is selected, the appropriate options
wiil be displayed for choice. A particular option
or NONE may be selected. The termination of
the chosen option will create a display of some
area of the data structure on the console screen,
and another selection can then be made in Step 9.4.3. (2).

(d) If NONE is the choice, a display of up to the first
eight items of the next higher level will occur. An-
other selection can then be made in Step 9.4.3. (2).
However, if the highest level of the data structure
is currently displayed, transfer is made to 9 4. (2).

(d) If NONE is the choise, a display of up to the first
eight items of the next higher level will occur. An-
other selection can then be made in Step 4.3 (2).

(e) At the time of a display, a terminal item may be
chosen. This means that the inquirer wants to
specify value(s) of that Item. A transfer to 9.4.4. (1)
Is made.

9.4.4 Phase 2: Value Selection

The inquirer selects values for the Phase 2 attrIbute just selected in Step 9.4.3.

(1) If the item selected is indexed and if there ar more values
than can be displayed at onae, a display is made of ranges
of values. By brealing selected ranges into successively
smaller groups, a dis- lay of individual values will eventually

evolve. However, if all values could hnve been initially
displayed at once, this would have been done. in any
case, when a particular value is selected, it is stored,
and a request for a relation specification is made. For
example, a particular value can be related to an attribute
by -; a range by _ or :S; and an exception by p. The
selected relation is stored. At this time, a return to
Step 9.4.4. (1) is made so as to redisplay all values. If,
at any time, the user selects NONE, a check is msde to
see if all values of the particular item were indexed. If
so, go to Step 9.4.5. (1), since all values have been se-
Jected by the user. Otherwise, a transfer to Step 9.4.4. (2)
is made to determine whether the user wants to key-in any
values.

(2) If the field was not indexed, or not fully indexed, the
user may key-in a value, if he does, the keyed-in value
is stored and a request for a relation selection is made.
When this is performed, the condition is stored, and
return to Step 9.4.4. (2) is performed. If NONE is the re-
sponse, the user has chosen all values, and a transfer to
Step 9.4.5. (1) is made.

9.4.b Phase 2: Condition Development

The .-quirer is presented with the evolving condition, and he is asked if he

wishes to develop the c-ondition further.

(1) At this time, a display of the condition with a request
for further narrowing (AND) of the search occurs. If
narrowing is desir,*d, the screen display shown at the
selection of this termi..,l item is redisplayed, an6
another selection can then iL made in Step 9.4. 3. (2). If
no further narrowing restrictions are to be given, the
inquirer is asked if a broadening (OR) % the search is
to occur. If no ftrther input is to be made, transfer to
Step 9.4.6. (1). Otherwise, the condition is broi3.ned
by going to the start of Phase 2, Step 9.4.3. (1).

(2) The total condition is displayed.

(a) If found to be satisfactory, go to Step 9.4.6. (1)
to terminate Phase 2.

.(bI) f the condition is to be narrowed, a determina-
tion of which term of the condition is to be narromwe
is mide. When the term is located, a tranfer to
Step 9.4. 3. (1) is made. If no term is selected, a
transfer to Step 9.4.5.(2) is made.

9-37

(c) If the condition is to be broadened, transfer to
Step 9.4.3. (1) to repeat Phase 2 and develop an
alternative condition. Q

(d) If none of these selections is made, the display at
Step 9.4.5. (2) is repeated.

9.4.6 Phase 2: Termination

The inquirer is presented with the 14st of available next steps.

(1) The user will select the next step he wishes to perform
with the Phase 1 and Phase 2 selections, just chosen.
If the user chooses to repeat either Phase 1 or Phase 2,
the appropriate transfer takes place. Otherwise, the
dialogue transmits an output according to the selected
output 'step.

Make Highest Up Th Request A
Dislope IAVOI The zw sqlýewons Selection
Phase 1 Display Nods Tbu Node

LAI

Selection Booomes Yes A Noutermind
Display Node Pidtad

No

Yea I'Additional"
Or "Prior"
Picked

No

No An Option Display Available Yes 110ption"
Selected Options Selected

Yes

Perform
Option No
Get New 2A
Level

Yes
me

Parent Of Yes 11 1
Display Node No In Highest None,
Becomes Display Ievel Displayed Chosen
Node

Ne

Store Yes Terminal
Selection Rem

Picked

Nc

U1,(,rurc 9-2. -Dý 'Ind Seleci,

DiplyADDplay LiAt A

Eiof of Jobr

Figur I-3 P-MIeN Terminttio

Selecionsstep

DiplyAvilbe0e

r.,PU Selected -

DlaozeMake itigtest Display Up
Ph.. LevgI The To Eight OMADisplay Nades.eo~n TIs selqetioA

Fiur 94,Phge2: Display Node ASelectlo

Picke

SeletedRelaionSelection

<o
AnyYe

Request
K yh

NOy-I

Seelection

I..

S~uelection 2 Vlu elcto

9- 42

Parent
Narrow Yea Prepare Of Display

CdiieFor COnjwictive Neo4 Becomes 3
Term Display Node

DisjunctiveorA

Conditioni~ Term

Fonigion Co6nditei: ondtnDeepm t

~~SE

71- 5

Qý
Coeto emN rpr o

ROeAt Ne

Terminate

i(i

it-fo

£I

9.5 DETAILED DESIGN

The detailed design of the Dialc-,ie Query is contained in the flowcharts on

Figures 9-8 through 9-34. The steps in the program are explained in detail in the

following paragraphs. Where appropriate, dhe chart connectors are referenced in the

text with the explanation of the step performed at the point of the connector. The terms

and paraneters used in the description are explained in Oaragraph 9.6.

9.5.1 Phase 1: Initialization and DWT Setup

The program begins by initializing the Want List (WL) and the Display Work

Table (DWI) for the Phase 1 operation. Then the DWT is set up for the first display.

(1) (1M) The word counter in the WL is cleared to indicate
an empty Want List.

(2) (1E) The node item ICC in the DWT is set to 1. This is
the logical identifier for the highest item in the data
pool. Its subitems are the first items to be displayed.
The node level in the DWT is set to one, the level of the
node item in the hierarchical structzre.

9-45

(3) (1K) The DWT node pointer is set to 1. This will
direct the DWT and display routines to start the dis-
play with the first subsumed item of the node item.

(4) (1B) A subroutine is called (Figure 9-25) to put the
Item List record number and description for the node
item into the DWT.

(5) (MD) A subroutine is called (Figure 9-26) to retrieve the
Iem List record numbers and descriptions for the items
subsumed by the node item, starting with the subitem
identified in the DWT node pointer. A maximum of eight
entries are made in the DWT for the subitems.

(6) (1F) If there are more subitems of the node item, beyond
the entries set into the DWT, the node size in the control
word (CW) is not yet zero. An indicator is set in the CW
to signal the display routine to inform the inquirer that
there are additional subitems. Similarly, if the DWT node
pointer is not at 1, the next set of subitems to be displayed
is not the first. An indicator is set in the CW to signal the
display routine that there are prior subitems. The user
will be permitx.ed to step forward or backward on the same
level if there are additional or prior subitems. After the
analysis, control passes to Figure 9-10, Step 1, (3D) to
issue the display and detect the inquirer's response.

(7) (1C) This is an entry point to begin displaying a new level
after the inquirer has made a selectlnn or has finished
searching within a given level. The CW is cleared and
a transfer is made to Step 3, (1K) to begin the new display.

9.5.2 Phase 1: Selection Diagnosis

With each display, the inquirer makes a selection. His selection, if any,

is recorded in the CW and, after the appropriate setting of the selection bit, control

is passed to the selection diagnosis in Figure 9-9. He may have selected a specific

subitem for deeper probing or as a desired attribute (if it was a field); he may have

chosen to see additional or prior subitems on the same level, if these exist; or he may

have chosen NONE, thereby indicating that he is finished with the subitems on this level

and wants to step back to a higher level. The selection diagnosis determines his selec-

tion, acts on it, and directs the production of the appropriate next display.

(1) (2A) A check is made to see if anything was selected
from the screen display (performed by examining the
s,)lection bit in the CW). If a selection was made, control
is transferred to Step 3, (2Y) to act on the selection.

Otherwise, the DWT node item ICC is examined to see if
it is at level one. If so, the highest node was displayed.
Since the inquirer made no selection, he is probably
finished with Phase 1. Control passes to Figure 9-16,
Step 1, (9C) to terminate Phase 1. If the node displayed
was not the highest node, the process continues with the
next step.

(2) (2B) The termination symbol in the node item ICC is
moved back one level, and the node level is decremented
by one to produce the ICC of the parent of the node item.
If the highest level of the new ICC designates a record,
the process is repeated to get the ICC of its parent file.
Control goes to Figure 9-8, Step 7, (1C) to set up the
DWT to display the subitems of the higher level node
item identified by the new node item ICC.

(3) (2Y) When a selection is detected in the CW in Step 1, (2A),
an analysis of the selection is made:

(a) If "ADDrrIONAL" items was the selection, the DWT node
pointer is incremented by eight so that the next group
of subsumed items is indicated. Transfer is made
to Figure 9-8, Step 5, (ID) to set up the DWT for the
additional set of subitems.

(b) If "PRIOR" items was the selection, eight is subtracted
from the DWT node pointer. The OW node size is
incremented by eight plus the number of items in the
present display. These steps set the parameters tothe. proper point so as to display the group of eight
subitems preceding the group just displayed. Trans-

fer is made to Figure 9-8, Step 5, (ID) to set up the
DWT for the prior set of subitems.

(c) If neither of the selections was made, a specific
subitem was selected, and its Item List record numbx:,
level number, and subnode number are inserted in the
Want List (WL), if an entry for the item is not already
there. This identifies it as an item selected in Phase 1.
The WL is kept in record-number order. A check of
the item type is made. If it is a field, the terminal
bit is set In the WL, and a transfer is made to Figure
9-10, Step1, (3D)to reproduce the same display as the
previous one so that the inquirer may make a further
selection. For other items, the Phase 1 bit is set
In the WL. If the item selected was a statement, the
process continues with Step 4, (2W). Otherwise, the
selected item is a file; thus, a recori symbol is
inserted in the next level oa the node item ICC, and the

4 node level is incremented by one.

C
9--47

(4) (2W) The subitem number of the selected item is inserted
after the last level of the node item ICC. The subitem
number is the current node pointer plus the selection num-
ber of the selected !tcm. The node level is Incremented
by one. This sets the node item ICC to the ICC of the
selected item so that the next display will show its' sub-
items. Control goes to Figure 9-8, Step 7, (1C) to set up
the DWT for the subitems of the selected item.

9.5.3 Phase 1: Console Display

This process is entered from Figure 9-8 after the DWT has been set up for

a new display. It is also referenced from Figure 9-9 to repeat a display after a field

was selected; from Figure 9--il torepeata display when the inquirer makes no selection

in the homograph option; and from Figure 9-14 to repeat a display when the inquirer

makes no selection after requesting an option. This chart describes the process of

creating a display from the DWT, displaying it, and recording the inquirer's response

in the CW.

(1) (3D) A subroutine is called (Figure 9-27) to create the output
buffer by converting the record numbers in the DWT to names,
inserting appropriate symbols in the output lines, and in-
eluding appropriate messages if any subsumed items to be
displayed have already been chosen (all chosen items are
noted in the WL). The subroutine will also place an appro-
priate message in the output buffer.

(2) (3E) A display on the console is performed using the output
buffer just set up. An examination of the response is made:

(a) If an'item 0 through 9 -.. s selected and if such an
item existed in the output buffer, we go to Step 3, (3A)
on this figure so as to set up the CW.

(b) If the user selected NONE, we proceed to Step 4,
(3C) on this figure so as to indicate to the system
that no selection waz made.

(c) If the choice was OPTION, the inquirer wishes to
make use of one of the special services of the systeM.
At this time, the available option is the homograph
option. The appropriate bit allowing the routine on
Figure 9-14tomakethe option available is set in the
option control word (OCW), and a transfer is made to
Figure 9-14, Step 1, (7A).

(d) none of the preceding choices were made, a transfer-
to Step 2, (3E) is made.

9-48

(3) (3A) The item-selected bit in the CW is set so that the
selection-diagnosis routine will know that an item cur-
rently displayed has been chosen. The item number
(e. g., 0 through 9) is inserted in the appropriate position
of the CW, and a transfer to Figure 9-9, Step 1, (2A)
occurs.

(4) (3C) As no item was selected from the current display,
the selected bit in the CW is cleared. This information
is -then available to the selection-diagnosis routine. A
transfer to Figure 9-9, Step 1, (2A) takes place, so that
further displays can be created.

9.5.4 Phase 1: Homograph Dialogue - I

If the OPTION selection is made, and if the homograph option is selected,

this routine is entered (from Figure 9-15). This part of the homograph dialogue requests

selection of an item for which the user wishes homographs, gets a name of the item

selected, and prepares it for a Term Encoding Table (TET) search so that all ICC's

with the same name will be located.

(1) (4A) The homograph option in the CW is set to one, so that
certain subroutines will recognize that the homograph
dialogue is currently in control. A call on a subroutine
(Figure 9-27) is performed so as to create an output buffer
by converting record numbers in the DWT to names, in-
serting appropriate symbols, and by including the proper
message.

(2) (4C) A display on the console is made of the same items
that were shown when the user selected the OPTION
response. There will be no "ADDITIONAL" or "PRIOR"
choices avilable. If a selection of an item is made, trans-
fer to Step 3, (4F). Otherwise, a determination is made
if NONE was chosen. If so, the homograph option bit
in the CW is cleared, since no item was selected as being
of interest for a homograph search, and a transfer to
Figure 9-10, Sttepl, (3D) is made so that a request for
another item selection can be made.

(3) (4F) As a selection was made, the ICC, record number,
and other information about the item selected for the
homograph routine are placed in the node of the DWT. The
node level is updated to reflect the level of the selected
ICC. The node pointer is set to 1 so as tu .v.Y"'e which
TET record within the selected TET file is to ue examh-ýdl.
The record number of the selection is prepared for a Term
List (TL) search so that its name can then be read. The

9-49

name of the selected item is prepared for a TET search

so that the appropriate record within the TET file can be
retrieved. Ti -nsfer to Figure 9-13, Step 2, (6A) is

performed.

9.5.5 Phase 1: Homograph Dialogue - H

This part of the homograph dialogue routine is entered from Figure 9-13 after

a display of the homograph items is made. This section will analyze the selection made

in response to the display; if a selection was made, the ICC of the selection will be re- -

trieved.

(1) (5A) A determination is made if a selection of an item was
made. If not, a transfer to Step 2, (5X) is made. If a
selection was made, an evaluation of the proper DWT node
pointer entry for the selection is made. This will indicate
the record number of the chosen homograph item within the
TET file. This record number is prepared for a TET seek
and read, and, thereby, the ICC of the selected homograph
item is retrievAd. It is placed in the DWT node, and the
level of the node ICC is placed in the DWT. The homograph
bit in the CW is cleared, to indicate that an exit from the
homograph routine is being made, and the TET is closed
for reading. A transfer to Figure 9-9, Step 2, (2B) is
made so that the chosen ICC can be replaced by its parent.
This will cause an ensuing display to contain as a subitem
the term whose ICC was just selected in the homograph
routine.

(2) (5X) As the user did not select a specific item, an analysis
is made to see if additional items are available and if they
are indicated as being de,-ired. If so, a transfer to Figure
9-13, Step 1, (6A) is made. If not, a check is performed
to see if prior items are available and if they are desired
by the user. If so, a transfer to Figure '9-13, Step 2, (6B)
is made. If neither, control is passed to Figure 9-13,
Step 6, (6M) so that another display with a request for
selection can be made.

9.5.6 Phase 1: Homograph Dialogue - III

This area of the homograph dialogue routine is concerned with setting up the

output buffer of up to eight parent names for the term for which homographs are desired.

It is necessary to provide the parent names, since the user must have some means to

be able to differentiate among the various items with simila'r names. Therefore, a

homograph display vMiRl consist of an item and a list of direct parents.

9-- 50

(1) (6B) This entrance provides for the selection of the

"PRIOR" selection on Figure 9-12, Step 2, (5X). In

this case, the DWT node pointer is reduced by eight
so that the eight prior TET entries will be redisplayed.

(2) (6A) This step is entered from Figure 9-11 for an initial
display of homograph items, from Figure 9-12 for further
displays, and from Figure 9-13, Step 1, (6B). The step
sets an output line counter to one. The present value
of the DWT node pointer is used as a record number for
a TET seek.

(3) (6J) A TET read is now performed.

(4) (9Y) A check is made to see if an end-of-file (EOF) was
encountered. If so, there are no further items; the appro-
priate switch is cleared in the CW; and a transfer to
Step 5, (6K) is made. However, assuming no EOF was
encountered, the parent of the ICC just retrieved is pre-
pared for a retrieve of its Item List (IL) entry. This
will provide a record number, type, and other informa-
tion that is placed in the DWT. The node pointer is in-
cremented by one as another TET record has been proc-
essed. A test is made to see if the output line counter
is equal to eight. If not, the counter is incremented by
one, and a transfer to Step 3, (6J) is made. If the counter
equals eight, the DWT is full. Therefore, another read
of the TET is performed. This is to check if there are
any more entries. If an EOF is not read, the additional
bit is set in the CW. Otherwise, transfer to Step 5, (6K).

(5) (6K) If there are prior items, that is, it the DWT node
poinWer is greater than eight, the prior item switch is
set ia the CW. Now, a transfer to the subroutine in
Figure 9-27 is made so that an ovtput buffer of munes,
symbols, and a message can be established.

(6) (6M) A display is made of the output buffer, and a trans-
fer to Figure 9-12, Step 1, (5A) is executed.

9.5.7 Phase 1: Option

This area is entered from Figure 9-10 if OPTION was selected, and from

Figure 9-1G uponthe same occurrence. The section will set up a screen display of

available options, and an associated transfer table for the .zart of the options.

(1) (7A) The homograph bit in the OCW is examined. If set,
the homograph option is added to the screen setup, and
the transfer address of the homograph routine is placed

9-51

4

in a table, The delete bit in the OCW is ex:-U'ned.
If set, the dejete opflon is added to thc screen setup,
and the transfer address of the delete-item routine
is placed in a table, The add-item bit in thr OCW is
examined. If set, the add-item option is adde to the
screen setup and the transfer address of the add -item,
routine is placed in a table. The Display Phase 1
Selections bit in the OCW is examined. If set, the
display-item option is added to the screen setup and the
tra.L-sfer address o; ihe display item is placed in a table,

(2) (7X) A display wu ita a roiupst message is issued, and
an analysis is made to see if an available option was
selected. If so. transfer to Figure)-15, Step 1, (8C)
is made. Otherwise, a determination of whether or
not NONE was selected is made. If so, control passes
to Figure 9-10, Step 1, (3D),where a redisplay L,; the
last display of DWT entries will be set up for selection.
If neither an item nor NONE was chosen, transfer
goes to Step 2, (7X).

9.5.8 Phase 1: Transfer or Delete

This step transfers control to the proper option routine. It is called by the

option evaluation routine, Figure 9-14.

(1) (8C) Appropriate transfers are made for option selections:

(a) Homograph - Transfer to Figure 9-11, Step 1, (4A)

(b) Delete Item - Transfer to Stop 2, (8A)

(c) Add Item - Transfer to Figure 9-8, Step 2, (1E)

(d) Display Phase 1 Selections - Transfer to Figure
9-16, Step 1, (9C)

(2) (SA) A call on a sbrutinx, Figurz 9-21 , isjaiu&. A•l.
items will be displayed, and selected items will be deleted
in an hierarchical manner.

(3) (81) A transfer to Figure 9-16, Step 1, (9C) is made so that
further termination of Phase 1 may take place.

9.5.9 Phase 1: Termination

The user is provided with a display of all Phase 1 selections, if any, and is

then given a choice of further processing steps. The routine is entered from Figure 9-9,

9-52

I [--

wher, the h`ghcst !eevcl es disp!aX ed and. no Iu',ther sle<'tons are made, -nd from Figure

9-15. whendisplayf)f all Phase I selectioni was requested .,r after the dietion of selec-

ted Phwae I itei. took place.

(1) (9C) A call on a subroutine, Figure 9-29, is made so
that all Phase 1 selections will i displayed in rj readily
understandahle, hierarchical ma -Y.

(2) (9D) A request for th.• next step is made. If there were
Phase 1 seepctions, the user may select OPTION, thc
printing of a hard .opy of all Phase 1 selections. trans-
fer to Phase 2, or restart of Phase 1. If OPTION is
chosen, the OCAV bits for add item, delete item, and dis-
play all Phase I itemns are set, and a transfer to Figure
9-14, Step 1, (7A) is made. If a typed hard copy is de-
sired, it is rixuduced. The lierm List (TL) is closed f
for reading, and an exit from the Dialogue job is made.
If Phase 2 is desired, conditions are to be introduced
by the uFer, and a transfer to Figure 9-17, Step 1, (1011)
is made. If restart of Phase 1 is desired, a transfer to
Figure 9- 9, Step 1, (1 H) is made. If there were no Phase 1
selections, only the stcp- T:7ansf'r to Phase 2 and Restart
of Fhase 1 will be available to the user.

9.5.10 Phase 2: initialization and DWT Setup

The start of Phase 2 is almost identical to that of Phase 1, Figure 9-6.

Therefore, only an outline is provided.

(1) (10H) The OCW is cleo Ad.

(2) (10E) The node item of the DWT is set to one (the relative
Saniverse of discourse is the node with the ICC of 1), and
the node level is also set to one.

(3) (10K) At this stage, the DWT node pointer is set to one.
This will direct attention to the proper subsumed item(s).

(4) (10B) A transfer to Figure 9-25 is executed so as to
retrieve the node IL entry.

(5) (10D) The next set oi ICC'R is created, and their ILj
c.tries are obtained by transferring to the subroutine
in Figure 9-26.

(6) (10G) An analysis of whether or not there are additional
or prior subsumed TCC's of the parent now listed as the
node ICC of the DWT (we are just displaying eight ICC's
at a time) is made. Appropriate bits are set In the CW,
and control goes to Figure 9-19, Step 1, (12D).

I (7) (10C) The CW is cleared, and control is passed to Step 3, (10K).

9-53

A!

9.5. 1t Phase 2: Selection _'lagnosis

The selection process of Pýhase 2 is quite similar to that of Phase 1, Figure

9 -9. The major difference occurs in Step 3, (JY),c. Thls is the ca)•se of the selection

of a field, whose chosen values wilt help form a condition.

(1) (lD) A check is ma&. to see if anything was selected from
the screen display (performed by examining the selection
bit in the CV). If so, control is transferred to Step 3, (I1Y).
Otherwise, an examination is made to see if the highest
node is uurrently displayed. J so, control is passed to
Figure 9-22, Step 7, (15F).

(2) (11A) The term symbol in the nose ICC is moved back
one level, and the node level is decremented by one.
A check is made to see if the new level is a record. If
so, control goes to Step 2, (l1A). Otherwise, transfer
to Figure 9-17, Step 7, (10C).

(3) (111') An analysis of the selection is made:

(a) If "ADDITIONAL' items 'as the selection, the
DWT node pointer is incremented by eight, so
that the next subsumed items are c,crectly indi-
cated. Transfer is made to Figure 9-17, Step
7, (10D),

(b) If "PRIOR" ,tems was the selection, eight is aub-

tracted from the DWT node pointer, and the munber
of currently displayed items plus eight is added to
the CW node size. This will permit the eight prior
items (there will always be eight prior items) to be
displayed when a transfer to Figure 9-17, ep 5,
(10D) is executed.

(c) If a field was selected, the record number is moved
from the DWT to the rontrol Value Table (CVT).
The incomplete bit and word-count bits are set.
If the first bit in the OCW is set, the Boolean "OR"
bit in the CVT entry is set so as to indicate a broad-
ening condition, the OCW is cleared, and a transfer
to Figure 9-21, Step 1, (14C) is made so is to get
the user's psrw aeter values for the chosen attri-
bute (selection).

(d) If neither of the precedi.g selections were made,
" statement or file was chosen. Therefore, if the

record number of the selection is not already in the
Want List (WL), it is inserted In Its proper numerical

9-54

position. The Phase 2 bit, indicating that this
record number was chosen in Phase 2, is set,
regardless of whether the record number was in
the WL or was just placed in the WL. In order to I
build a subsumed ICC, an analysis is made whether
or not a statement was selected. If not, a file was
chosen. Therefore, the next level of th. parent ICC
h.�� 1n 1'R" (record) entry. The node level is in-
creased by one. At this time, the same path is fol-
lowed as if a statement had been chosen. Namely,
the correct value of the DWT node pointer for the w
selection is inserted in the next level of the 1CC of the
parent node of the DWT. The node level is incre-
mented by one. A ntw ICC has now been formed,
and, in order to display subsumed items, a trans-
fer to Fig-are 9-17, Step 7, (10C) is made.

9.5.12 Phase 2: Console Display

The routine is quite similar to the one described in Phase 2, Figure 9-10.

The basic steps are as follows:

(1) (12D) Control is passed to the sub,,,tine on Figure 9-27
so that the output buffer can be created.

(2) (12E) A display is made. An analysis of the rcsponse will Ibe made:

(a) If a legitimate item 0 - 9 is selected, transfer to
Step 3, (12A).

(b) If the NONE selection is made, control goes to
Step 4, (12B).

(c) If OPTION is chosen, the OCW is setup for the
redisplay option, and a transfer to Figure 9-20,
Step 1, (13A) is made.

(d) If none of these, go to Step 2, (12E) for a redisplay.

(3) (12A) The item-selected bit in the CW is set, and the item
number of the selection is placed in the CW. A transfer to
Figure 9-18, Step 1, (l1D) is made.

(4) (12B) The selected bit in the CW is cleared, and a trans-
fer to Figure 9-18, Step 1, (l1D) is m, '.

9-55

I!
9.5.13 Phase 2: Option

This routine is very similar to Phase 1, Figure 9-14. The major difference

is that the display of all Phase 1 selections ts the only available op.aon.

(1) (13A) The OCW is examined for possible options. At
this time, the only available option is the redisplay of
all Phase 1 s;elections. The option is added to the screen
display, and its transfer address is put in a table.

(2) (13X) A message is created, and a display is made. If
a legitimate item is chosen, go to Step 3, (13B). If
NONE is chosen, go to Figure 9-19, Step 1, (12D).
If neither, go to Step 2, (13X),

(3) (13B) Using the item number selected and the transfer
table previously set up, a jiunp is executed.

(4) (13Y) If DISPLAY is chosen, go to the subroutine on
Figure 9-29 for the display of all Phase 1 selections.

(5) (13D) Upon return from tile subroutine, transfer to
Figure 9-19, Step 1, (12D).

9.5.14 Phase 2: Terminal Selection - I

This routine will deal with the situatior of a selected field being either fully

or partially indexed.

(1) (14C) A determination is made if the selected attribute
(a field) is indexed. This is determined by chc eking the
index indicator in the DWT. Certain counters are cleared;
a transfer to a subroutine on Figure 9-31 is made so as to
set counter NIV (Numbe" Indexed Values) equal to its value.

(2) (14E) The start of the first rnige in the Value Range Table
(VRT) is set to one, since the entire range is currently to
be considered. Counter DNR'1 "Mvided Number Indexed
Values) is set equal to the contc,,I.s of NIV.

(3) (14F) The contents of DNIVl are divided by eight (so as to
secure eight ranges Cf values). DNIV2 is set equal to
DNIV1 plus any remalder received from the division.

(4) (14Y) A transfer to a subroutine on Figure, 9.32 is made.
-!3re, the values of DNIV1, DNIV2, and the first entry in
VRT will be used to form a display of eight ranges.

9-56

(5) (14A) An evaluation is made if a legitimate selection was

made. If not, go to Step (;, (14X,. Othexrwiso.

(a) If the last range was selected, DNIV1 is set equal
Lo the contents of DNIV2. This will compensate for I
DNIV2 possibly being greater than DNIVl.

(b) Ur DNIV1 is now equal to 1, a value and not a range
has been selected. Therefore, a request for a re-
lation selection is made, and the value awd relation
are stored in the CVT. Control is passed to Step 4,
(14Y), where the same tdisplay of values just issued
is redisplayed.

(c) If DNIV1 is not equal to 1, the start of the selected
range is placed in the first entry of VRT, and a
transfer to Step 3, (14F) to break the chosen iaige
into smaller chunks is performed.

(6) (14.) If NONE was not selected, a return to Step 2,
(14E) is made so as to start the process again. If NONE
was chosen, a check is made to see if the highest display
is being made. If not, go to Step 2, (14E) to issue that
display. If the highest display is being made and NONE
was chosen, the Field Value Table (FVT) is closed for
reading, and, if the attribute is fully indexed, a transfer
to Figure 9 -22, Step 6, (15C) is made as no kcy-in of
values is necessary. If, hwever, the attribute is not
fully indexed, a transfer to Figure 9-22, Step 2, (15B)
is made for the key-in of additional values.

9.5.15 PHASE 2: TERMINAL oiLECTJON - II

This part of the terminal selection routine primarily deals with the case cf t!'-

unindexed attribute (field), where a key-in of value(s) is required. It also performs a

display of the total condition and evaluates the next step.

(1) (15A) A request is setup in the output buffer for the
key-in of a value. A transfer to Step 3, (15X) is mt-u.

(2) (15B) A determinatien is made if any value was chosen
during the operation on Figure 9-21. If not, go to Step
1, (15A). Otherwibe, a request is setup in the output
buffer for the key-in of an additional value.

(S1 (15) All "R's" (record Indicators) in the selected ICC j
are set to 1. This will obtain an IPC, which is prepared
for the retrieve-item subroutine.

9-57

'I

(4) (i5E) After this operation, the obtained value is trans-
lated to external torrn and is placed in the output buffer,
labeled as a sample.

(5) (15Y) A display is made and a determination of whether
or nqt a key-in occurred i,. made. If not, go to Step 6,
(15C). Otherwise, a request for a relation selection is
made, and the keyed-in value with the relation selection
is stored in the CVT, A return to Ste.) 5, (01, is made
so as to request further key-ins.

(6) (15C) A request for a further restrictive condition is
made. If narrowing is not desired, go to Step 7, (15F).
Otherwise, a preparation for a conjunctive (Boolean
"AND" or narrow condition) term is made, and a trans-
fer to Figure 9-18, Step 2, (1IA) iE made.

(7) (15F) If broadening is not required as the start of a
further restrictive condition, a transfer to Figure 9-23,
Step 1, (16A) is made.

(8) (15D) Otherwise, a preparation for a disjunctive (Boolean
"OR" or broaden condition) term is made. The first bit
(bit 0) in the OCW is set so as to indioate this "OR" condi-
tion, and the WL is restored to its status at the start of
Phase 2 by clearing all Phase 2 selection bits and by re-
moving all items not selected in Phase 1. A return to
Figure 9-17, Step 2, (10E) is made to restart Phase 2.
The only thing saved from the prior Phase 2 pass is the
CVT.

9. 5. 16 Phase 2: Termination - I

This pnr-t ,f .-he term-inathn, routine deals with the determination by the user

if he is satisfied with the evolved condition. The routine is entered from Figure 9 -22,
when no further narrowing or broadening is indicated by the user.

(1) (16A) A display of the total condition is made. If there
were no Phase 2 selections, a message Lt that effect is
indicated. The user is requested to r,1. po:1i as to whether
the condition is satisfactory, the conk,&1t n is to be narrowed,
or whether the condition is to be broadened.

(a) If the condition is satisfactory, a transfer to
Figure 9-22, Step 1, (17A) is made so as to allow
the user to select the final terminntion selection.

I 9-58

I4

(b) If the condition is to be narrowed, a check is made
to see if any Phase 2 selections were made. If not,
a return to FigLre P.-17, Step 2, (10E) is made.
Actually, this will restart Phase 2. if Phase 2
selections were made, a transfer to Step 2, (16B)
is made so that a determination of which term is to
be narrowed is made.

(c) Ir the condition is to b- broades'ed, a transfer to
Figure 9-22, Step 8, (15D) is n ade. This will set up
the proper steps for a disjunctive term.

(2) (161B) The total conditio.i is displayed, with the first coni"ic-
tive term underlinen.

(3) (16X) If the user does not find this tern i satisfactor;, a
preparation for a conjunctive term is madc, and a retuni a
to Figure 9-17, Step 2, (10E) is made.

(•) (16Y) Otherwise, a check is made to see ii the last con-
junctive term is now underlined. _: not, t"Le total condition
is again displayed, with the next conjunctive term now being
underlined, and a transfer to Step 3, (16M is made. if the
last term was presently underlired, a return to Step 1, (16A)
for further display evaluation is made.

9.5.17 Phase 2: Termit ition - II

This part of the terminiation routine determines what path the user wants to

follow with the selectioi.s he made wiU. the help of the Dialogue query.

(17A) The next step is requested. Available steps are dependent on Vhat

selections the user made. As shown in Table 9-2, if the user has only made Phase 1

selections, he may select those items as indicattJ by "X" in column 2. If the user

has only selected Phase 2 items, he may .elect those items as indicated by "X" in

column 3. If he chose Phase 1 rnd Phase 2 selections, he can choose any step as

shown in column 4.

9.5.18 Retrieve Node IL Entry (Subroutine)

This subroutine retrieves the item list (114 entry of the parent node ICC of

the DWT, stores the record number and other information in the DWT, nnd puts the

node size in the oontrol word (CW).

9-59

L-

00

00 0,

0 0 0 0 0)- a
00

z0 V

) 0) C) C))

z 0

00
- 4)C-4)

020

-4C . 4 C)T

x

r2 r 2

tx
C26

t ENTRANCES (from:) J EXIT (to:)

1. Figure 9-8 (1SA) Figure 9-8 (1D)
2. Figure 9-17 (18AI) Figure 9-17 (10D)

(18A) The node ICC is prepared for the retrieval of its IL entry. A call on

tht retrieve IL entry subroutine yields the following desired information: the record

number, type, and Index indicator, which are placed in the DWT; the size of the node,

which is placed in the CW. A return is now made.

9.5.19 Create ICC's and Obtain IL Entries (Subroutine)

This subroutine uses the contents of the DWT to create the next set of ICC's,

and it then retrieves the IL entries for these ICCs.

[J•NTRANCES (from:) EXITS (to:) 7
I.j Figure 9-S (19A) Figure 9-8 (IG)

S Figure 9-17 (19AI) Figure 9-17 (10G)

(1) (19A) A switch Is either cleared (Phase 1 entry) or

set (Phase 2 entry), so as to later be able to determine
which phase is in control.

(2) (19Y) Using the ICC of the node level in the DWT, and
the value of the DWT node pointer, a new ICC is created
by taking the value of the node pointer plus the location
(1-8) within the DWT table which is now being processed
to the ICC. A check is made to see if the segment of the
item list (IL) containing the record number of this ICC is
in memory. If so, al! that is required is a locate of the
IL entry. Otherwise, a somewhat lengthier operation,
namely, retrieve IL entry, takes place. After either
operation, the desired information about the ICC is in
memory.

(3) (19B) The record number, type, and Index indicator are
placed In the appropriate slot of the DWT. The node size
in the CW is decremented by one. If this was a Phase 2
intry (switch initiall•- t), the Field Value Table (FVT)
record number and inAex indicator are placed in the
DWT1 in the same relative position as the last entry
placed in the PVT. The node size in the CW is examined.
If equal to zero, all items have been examined. An exit
Is then performed. Otherwise, a check Is made to see if

9-61

all eight entries of the DWT have been processed. If
not, a return to Step 2, (19Y) is made so as to process
the next DWT entry. Otherwise, an exit is performed.

9.5.20 Setup Output Buffer - I (Subroutine)

'his portion of the subroutine obtains the term names for all entries of the

DWT, inserts symbols, and sets up an output Luffer. It operates in conjunction with

Figure 9-28.

ENTRANCES (Figure 9-27; from:) EXITS (Figure 9-28; to:)
1. Figure 9-10 (2t A) Figure 9-10 (3E)

2. Figure 9-11 (20A2) Figure 9-1i (4C)
3. Figure 9-13 (20A3) Figure 9-13 (6M)
4. Figure 9-19 (20A1) Figure 9-19 (12E)

(1) (20A) If this subroutine is entered from the Homograph
Dialogue IHl(Figure 9-13), switch D is set. Otherwise,
switches C and D are cleared. if the term list was never
opened for reading during this job, it is now opened.
The record number of the parent node of the DWT is pre-
pared for a term list seek and read. This will allow the
term name to be moved to the output buffer. Symbols to
indicate the type of the term, for example file, state-
ment, or field, are inserted around the term name. This
line will act as the parent of the subsumed items to be
displayed.

(2) (20E) The next subsumed record number in the DWT is
prepared for a TL seek and read. The term nane and
appropriate symbols are placed in the output buffer.
An analysis is made to determine if the record number
for which the term name was just read is in the WL or
CVT. If this item was not chosen previously, go to
Step 3, (20Y). If an item was previously selected, an
indication is placed in the output buffer so that the user
will know that he has previously chosen this subsumed
item in Phase 1, Phase 2, or Both Phases. Switch C is
set so that further processing will know that some item on
the screen display has previously been selected.

(3) (20Y) If there are more record numbers in the DWT to be
analyzed, a transfer to Step 2, (20E) is made for further
processing. Otherwise, the contents of the DWT has been
setup for a screen display, and a transfer to Figure 9-28,
Step 1, (21A) is made.

9-62

9.5.21 Setup Output Buffer - II (Subroutine)I
This portion of the subroutine will add the "ADDITIONAL" and "PRIOR"

selections to the screen setup, if required, and will add an appropriate message to the

output buffer.

(1) (21A) The prior and additional bits in the CW are examined.
If either is set, the appropriate options of additional
or prior are added to the screen display. At this point,
an analysis is made to determine if the homograph bit in
the CW is set. If so, transfer to Step 2, (21X). Other-
wise, a check is made to see if switch C is set. If not,
a message requesting a selection is placed in the output
buffer. If switch C is set, a message requesting the
selection of an additional item is made. After either case,
an exit is made.

(2) (21X) An analysis is made to determine whether or r t
switch D is set. If not, d message requesting selection
of an item for the homograph option is made. If switch
D is set, a message requesting a homograph item selection
is made. After either case, an exit is made.

9.5.22 Display (Delete) Selected Items - I (Subroutine)

This subroutine creates a screen display of all Phase 1 items, and, if the

user selected the delete option, the subroutine will permit item(s) tu. be deleted.

DISPLAY

ENTRANCE (from:) EXIT (to:)

1. Figure 9-16 (22A) Figure 9-16 (913
Figure 9-20 (22A1) Figure 9-20 (13D)

DELETE

ENTRANCE (from:) EXIT (to:)

1. 1IFigure 9-15 (22D) Figure 9-15 (8B)

(1) (22A) This entrance to the subroutine is for the display
of all Phase 1 selection entries. A determination is made
whether or not there were any Phase 1 cho4ces. If not,
a display is made stating "NO PHASE 1 SELECTIONS,"
and an exit is made. Otherwise, switch D is cleared so
as to indicate a display entrance. Transfer is made to
Step 3, (22F).

9
9-63

(2) (22D) In order to indicate a delete entrance, switch D
is set. It should be noted that this portion of the routine
would not be entered if there were no Phase 1 selections.

(3) (;2F) A :uunter used to step through the WL !s set to two
(so as to bypass the first two words of the WL).

(4) (22G) Using the counter and the address of the WL, the
next Phase 1 record number is obtained. The counter is
incremented by two for each entry. A seek-and-read of
the term list (TL) is performed on the record number of
the Phase 1 selection. The name is shifted to its proper
hierarchical output buffer slot, and the counter is incre-
mented by two. A check is made to see if eight output
items have been processed. If so, a transfer to Step 6,
(22C) is made so as to process the output buffer for a
display.

(5) (22E) A check is made to see if there are more Phase 1
selections. If so, transfer to Step 4, (22G) to process
the next Phase 1 record number.

(6) (22C) If additional or prior Phase 1 items exist, the ap-
propriate option is added to the output buffer. If switch D
is set (delete entrance) transfer to Figure 9-30, Step 3,
(23B). Otherwise (display entrance) transfer to Figure
9-30, Step 1, (23A).

9. 5.23 Display (Delete) Selected Items - II (Subroutine)

This part of the subroutine will set up a display, and will allow the user

either to run through a display of the items or a delete of selected items, depending

upon the initid entrance.

(1) (23A) This portion of the program provides for the
display of all Phase 1 selections. An appropriate
message is placed In the output buffer.

(2) (23X} A display is made. Three responses are avail-
able.

(a) If CONTINUE is selected, on exit is made;

(b) If "PRIOR" is chosen, go to Step 6, (23E);

(c) If "ADDITIONAL" is picked, go to Step 5, (23F);

(d) If none of the above, return to Step 2, (23X).

9-64

StI

(3) (23B) This portion of the program provides for the
deletion of appropriate Phase 1 selections. A message
is placed in the output buffer.

(4) (23Y) A display is made. Four responses are available.

(a) If NONE is selected, an exit is made;

(b) If an item is selected, go to Step 7, (231);

(c) If PRIOR is chosen, go to Step 6, (23E);

(d) If ADDITIONAL is picked, go to Step 5, (23F);

(e) If neither, go to Step 4, (23Y).

(5) (23F) The output area is cleared, and a transfer to
Figure 9-29, Step 4, (22G) is performed so as to setup
another display.

(6) (23E) Sixteen plus two times the number of currently
displayed record numbers is subtracted from the counter.
This will allow for the redisplay of the prior ?ight items.
A transfer to Figure 9-29, Step 4, (22G) is performed.
so that the prior items will be redisplayed.

(7) (23M) A determination of which item was selected for
deletion is made. All Phase 1 elements in the WL,
starting with the current selection, are deleted until
an entry with the same or higher level is encountered.
The WL is repacked as the deletion is taking place. A
transfer to Figure 9-29, Step 3, (22F) is made so that the
user may doublecheck if he wishes to delete any other items.

9.5.24 Set NI = Number Indexed Values (Subroutine)

This subroutine determines the number of indexed values of an attribute by

examining the count of the number of entries in a particular Field Value Table (FVT)

record number.

ENTRANCE (from:) EXIT (10:)

1. Figure 9-21 (24.) Figure 9-21 (14E)

(1) (24A) Using the correct YVT record number from the
DWT1, the appropriate portion of the FVT is opened
for reading. Using a seek EOF, the number of indexed
values is retrieved. This number is placed in cell NIV.
The VRT table is cleared, and the first entry is set to
one, so as to indicate the start of range. An exit is made.

9-65

'~ W"'~~i

* 9.5.25 Display Eight Ranges - I (Subroutine)

This subroutine will create a display of values for an indexed attribute, after

certain values, i.e.., NIV, DNIVI, and DNIVM are calculated (Figure 9-21) and after

the start of the first range is placed in the '"tT. This section takes care of the case

where there are eight or more values. f
ENTRANCE (from:) EXT (to:)

I I �Fiirp 0-29 (?.A- Fioure 9-j'_4,2)

(1) (25A) A check is made to see if DNIV1 is equal to
zero. This would indicate there is only one value or
range. If so, a transfer to Figure 9-34, Step 1, (27A)
is made. Otherwise, counter F is set to one so as to
indicate the first output line.

(2) (25X) The VRT is filled by adding successive powers
of DNIV1 to previ(is entries in the VRT. This is per-
formed seven tim, ,j. Then DNIV2 is added to the eighth
entry to obtain th# ninth entry.

(3) (25B) A determination is made if DN1V1 is equal to one.
If so, part (or all) of the display will be values as op-
posed to ranges. If true, go to Figure 9-33, Step 1, (26A)
Otherwise, counter F is set to one, and the first record
number in the VRT is prepared for a FVT seek.

(4) (25C) The FVT record number is read and the value
obtained is stored.

(5) (25D) The end-of-range record number is prepared for
a FVT seek. A seek and a read are performed. The
output line (range) nunber as per counter F is prepared.
A check Is made to de:ermine if F is equal to eight. If
so, go to Step 6, (25E). Otherwise, F Is incremented by
one, and a transfer Is made to Step 4, (25C).

(6) (25E) A message is inserted in the output area, and eight
ranges are displayed. A return Is then made.

9.5.26 Display Eight Ranges - II (Subroutine)

This section deals with the case where there are from eight to fifteen values

indexed in the FYT.

9-66

(1) (26A) Counter F is set to one.

(2) (26X) The record number of the next value in the VRT
is prepared for a seek. A seek-and-read of the FVT
record are performed. The output line is prepared as
per the value of output line indicator F.

(3) (26B) A tert Is made for F being greater or equal to
seven. If not, transfer to Step 2, (26Y). Otherwise a
test is made to see if DNIV2 's equal to one. If so,
there is no final range, and we go to Step 5, (26W).
Otherwise, the record number in the eighth word of VRT
is prepared for a FVT seek-and-read. The value of the
FVT is obtainea, and prepar•:,-on ., e ninth record
number for a seek-and-read is made. The output range
in line eight of the buffer is setup, and a transfer to
Figure 9-32, Step 6, (25E) is made.

(4) (2oY) F is incremented by one, and a transfer to Step 2,
(26X) is made.

(5) (26W) A test is made to determine whether or not F is
equal to eight. If it is, go to Figure 9-32, Step 6, (25E).
Otherwise, transfer to Step 4, (26Y).

9.5.27 Display Eight Ranges - III (Subroutine)

This section deals with the case where there are less than eight indexed

values. Therefore, there will be just one display of values.

(1) (27A) F is set to 1. The first record number in the VRT
is prepared for a FVT seek.

(2) (27X) A FVT read is executed.

(3) (27B) The output line specified by F is set up in the
output buffer. A check is made to see if F is equal
to DN1V2. It so, transfer to Figure 9-32, Step 6,
(25E). Otherwise, the next entry in the VRT is set
equal to the first entry plus F. F is incremented by
one, and a transfer to Step 2, (27X) is performed.

9-67

.~.4..!

00

a ~ ao

r .- e -

sin

9-69

9--70

a

I

.'; .�

i

C,

4

� I -�

I

IC
)

9-71

I
- W-�.

C--.

a10

>44

E4 14

16a

*k

IA A

9-73

0

9-74

C II
I

g
ci

N .8
49

S

A -I
3

IN '.4

"4I I0

I
II

III

K I-

It
4

92

A

IE

0.10

9-76J

A4

S

'1
- I

0,I

'-4

I

is
I,
L

INt

Ail

SJAl

0 (
ItI

T- -- TllI9-7

• i , - 1II"

.1 jA '-"

S. 1
0.

...

..

h.

C
a

II
1: 4

I 0.
I S

I. -S

I I

- I
0
"4

0

I
ra4

ii;

9-79

- .- j

*•I••. ' . . •,. •

966

0)0

I __ !••

Jm

Up. aT

II I

hjII

ImI

I

I

II! I
N IJ� I

I
0

0U

I' C

a'

cq

ii Iii ii -.Q)

4

p

a j �:II
�1 Ii;

9-82

�.. '- a

.44

C4

9-93

I

lig

1 g

9--84

Jig4

oil

9-85

C

M rd -

I
00

I! j
U

o .0

a

6
Ii a

U

p.'*1
U

cq

a iii I

.4 ii I--
-s

(9
9-86

4 1 �- __ ____ ________ ________ ______ -

C IIS

I ii if

ii - ii 7

C

I a
I-

SI!
3

Cj a ii a I
In in Ii -0

I a
F:

0
9-87

I

-�

11 ii I

jI

-41
1

g ' .t
t

9--011

I

ai .

ii a3 a i
I m a.

1 0

U 1
IS I I

'4 1
- 8 m

II 1'*! it
U II

i Li
0

0
U

�ia ,I�I
hi

I

Fl
j

rz

.1

lie

03)

P44

C4 C4

>44

06 to

060

9-90

C. -1

In 10,

21)>

rE14

cq ~ w T
ts+

+ t ra4

Sc

8 ALI

102

e -D~

bf

iid

ICID

1

C-3s

184

9-9

4 i

9.6 EXPLANATION OF TERMS AND PARAMETERS

9.6.1 General

This section explains the DM-1 directory elements and system term-4i an, ir:

key tables and parameters used in the flow charts for the Dialogue Query. Table 9-.1

gives the full name for each abbreviation used and shows the paragraph number of tU•"'

explanation where appropriate. Tables 9-4 through 9-11 show the formats for t; m,

tables and parameters described in Paragraphs 9.6.2 through 9.6.9.

9.6.2 Display Work Table (DWT)

The DWT is a table used in the Dialogue Query to specify the items to I W

displayed. Table 9-4 shows the structure of the DWT. Each display created by t ttn

the DWT, except the homograph display, represents the subitems of some parent iKe

The homograph routine uses the DWT in a slightly different manner, namely, to dtjp1*%

the parents of items with the same TET name.

9.6.3 Display work Table I (DWT1)

"The DWT1 is a table used in the Dialogue Query Phase 2 (Condition

Specification Phase). At the time that the DWT Is setup during Phase 2. the DWTI

9-95

A'

|

T. _BLE 9-3. ABBREVIATIONS/NAMES USED IN FLOW CHARTS

Abbreviation Name Reference

CVT Condition Value Table Paragraph 9.6.5

CW Control Word Paragraph 9.6.6

Directory Schematic Table 9 -1

DWT Display Work Table Paragraph 9.6.2

DWT1 Display Work Table 1 Paragraph 9.6.3

FVT Field Value Table Paragraph 9.6.12

Homograph Paragraph 9.3.1.1 1(4)

ICC Item Class Code Table 9-1

IPC Item Position Code

IL Item List Paragraph 9.6.10
Table 9-1

JX Job Extension -

Node Level Table 9-4

Node Pointer Table 9-4

0CW Option Control Woci, Paragraph 9.6.7

QRCC Query Response Communi- -

cations Console

SIR Segment Index Right

Structure of Purchasing Figure 9-1
Data Base

TET Term Encoding Table Paragraph 9.6.9

TL Term Tist Paragraph 9.6.11
Table 9-1

VRT Value Range TrAble Paragraph 9.6.8

WL Want List Paragraph 9.6.4

9-96

9fi*C • :* .. .-

i also setup. The DWT1, Table 9-5, contains eight entries which correspond to the

e~ght subsumed items in the DWT. Each entry of the DWT1 contains information about

indexing of the Uttribute, and the FVT record number of the attribute. This information

may be necessary for listing indexed values of attributes.

9.6.4 Want List (WL)

The WL (Table 9-6) is a table used to retain Phase 1 selections and Phase 2

nonfield selections. An entry in this table is made for each Phase 1 item selection, and

for non-terminal Phase 2 selections. It is used in conjunction with the CVT (refer to

Paragraph 9.6.5) which contains Phase 2 terminal selections. Each entry in the WL

consists of two words containing the level, subnode, terminal item indicator, previous

selection indicator, and record number of the item selected.

9.6.5 Condition Value Table (CVT)

The CVT (Table 9-7) is a table used to retain Phase 2 terminal (field)

selections, with the specified value and conditions. The length of an entry is variable.

The entries are linked via a count of the number of words to the start of the next

entry. New entries will, however, always begin with a full word. The stored infor-

mation consists of a field name, value, relation, and end-of-range (optional). Other

indicators concern the "NOT" possibility and a boolean "AND/OR" indicator. The CVT

is filled after a value has been selected and completed when a relation has been speci-

fied. The boolean "OR" is set if bit 0 in the Option Control word (OCW) is set.

9.6.6 Control Word (CW)

The Control Word (CW), Table 9-8, is a vital pai t of the display routine.

Bits 0 through 9 contain the size of the current node ICC of the DWT as of the last

display of subitems of that particular node. After a selection, bits 10 through 13

may contain the number of the selection. Bit 14 will indicate whether (set to 0) or

not (set to 1) a selection of a displayed choice was made. When the dialogue is in the

homograph option, bit 15 is set to alert the display routine. Bits 16 and 17 are used

to inform the display routine of additional and prior items of the current node, so that

corresponding choices may be added to the screen setup.

I9-97

9.6.7 Option Control Word (OCW)

The Option Control Word (OCW), Table 9-9, is primarily a link to the (
Option toutine. When calling on the Option routine, the bits in the OCW are examined

for desired options. If bit 17 is set, the homograph option is available; if bit 16 is

set, the delete-item option is available; if bit 15 l, set, the add-item option is available;

if bit 14 is set, the Display All Phase 1 Items option is available. Another use of the OCW

is the specification of the boolean operator with bit 0. If this is set at the time of a

condition specification, a boolean "OR" versus "AND" condition is desired.

9.6.8 Value Range Table (VRT)

The Value Range Table (VRT), Table 9-10, is used for displaying a range

of valued if an Indexed attribute is selected in Phase 2. The list of values cf the

attribute is broken into eight ranges, with the last range possibly longer because of

a remainder after division of the full range by eight. The table contains nine words;

the first contains the start of the first range, and the remainder contain the start of

successive ranges.

9.6.9 Term Encoding Table (TET)

The Term Encoding Table (TET), Table 9-11, is a file containing a record

for each unique item name in alphabetical order. Each record subsumes a file of

ICC's corresponding to the name. This is used by the homograph option to obtain

the ICC entries for all items with the same name.

9.6.10 Item List (IL)

The Item List (IL) is the source of structure information for the dialogue.

It is used to obtain the type, size, record number, and level of a particular ICC.

The Item List is a file with a record for each item (Node) in the data-pool

structure. The records are In order by. the Item Clasu Code (ICC) of that item.

9.6.11 Term List (TL)

The Term List (TL) is used by the dialogue to translate the IL record

number previously obtained into a name.

9-98

1A

The item names and units are maintained in a Term List fle Thh

* parallel to the Item List file. For each record in the Item iT-st, there i: - recoc:; -M

the Term List, and the corresponding record numbers contain info rni-. 1lou I. the

same item.

9.6.12 Field Value Table (FVT)

The Field Value Table is used by the dialogue to retrieve valu,:3 of an

indexed attribute.

The FVT is a file that contains records relating to certain attributes. 'T1ese

records contain actual values for the desired item.

TARLE 9-4. DWT (DISPLAY WORK TABLE)

"PARENT (IN B-S Format)

'ICC

-Node Leve- Node Pointer -
Level of the Currert I owest Node Number

Node ICC 0'-Ig Displayed This Time

I'Parer , Parent
I Unused A S jie I Pecord Number

I Unused IA PS Type Record Number

I- Unused I -A___STyp
I Unused IA PS Type Record Number

I Unused IA PS Type Record Number

I Unused 'A PS Type Record Number

I Unused IA PS Type , Rcord Number

I Unused AI PS Type Record Number
I Unused IA PS Type Record Number

I Unused IA PS Type Record Number

0 1 7 89 1011 12 17 18 35

BITS 18 - 35 Record Number
12- 17 Type
10 - 11 Previous Selection

00 = Unused
01 Phase 1
10 = Phase 2
11 = Both Phases

8 - 9 Indexed Attribute Indicator
1 - 7 Unused

0 If Indicator Set, No Record Number

NOTE: DWT may have from one to eight Record Numbers.

9-100

TABLE 9-5. DWT 1 (DISPLAY WORK TABLE)

012 17

'A jFVT Roe. No.

'A FVT Rec. No.

'A FVT Rae. No.

'A FVT Rec. NO.

'A FVT Rec. No.

A FVT Rec. No.

'A FVT Roc. No.

'A FVT Rec. No.

BITS 0 - 1 Indexed Attribute Indicator

2- 17 FVT Record Number

NOTE: Only used in Phase 2.

V

9-101

00

TABLE 9-6. WL (WANT LIST)

#Of Words in Table

Level Subnode T I P S Record Number

Level Subnode TI PS Record Number
Level Subnode TI PS Record Number

T PLevel Subnode TI S Record Number

T I P

Level Subuode TI PS Record Number

Level I Subnod TI PS Record Number

Level Subnode TI PS Record Number

T P
Level Subnode ' I PS Record Number

0 5 6 16 17 18 19 20 35

BITS 20 -35 Record Number
18 - 19 Previous Selection

00 = Unused
01 = Phase 1
10 = Phase 2
11 w Phases 1 & 2

17 Terminal Item
00 - NO
01 - YES

6- 16 Sublode Number
0 - 5 Level Number (Last Digit in ICC)

NOTE: WL Is maintained by having all Record Numbers in contecutive order.

9-102 j

TABLE 9-7. CVT (CONDITION VALUE TABLE)

Empty Nurbar of Words to I B Field Record Number
Indic. Start Next Enkry I I I F

string

of

binary

bits

Empty Number of Words to I B Field Record Number
Indic. Start Next Entry

string

of binary

bits Empty INumber of Words
Indic. Used This Entry

old' Record Numbera

eon-complete string of binary bits

Ernqqy ndk.. = No. of unused bits in last word
used for binary stream of bits

I = If i, complete string of Binary Bits
If .0or-•a--plete string of Binary Bits

Wng at Bnary Bits:
. . Fi~lo Name (Alpha-Variable Length) ...

Valu (Bhuary-Variable Length) ... Relation
412BM 00 is, 01 is>, 10 is<, 11 in<Name<)

-En C ut ange (Binaiy-Varilae Length -
Optioni) I (Bit: Ois I is)p..

13 Booies Connector; 0 - AND; I. OR

9-103

TABLE 9-8. CONTROL WORD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Si-,e of the Node -. Item -4- Switches

BIT 0 -9 Size of the Node

BIT 10-13 Item Selected 0= Prior
1-8= Actual
9 = Additional

BIT 14 Item Has Been Selected

BIT 15 Homograph Option Selected

BIT 16 Additional Items This Node

BIT 17 Prior Items This Node

TABLE 9-9. OPTION CONTROL WORD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

B 1FITI I I I i !Jswitch..
BIT 17 Homograph Option Available

BIT 16 Delete Item Option Available

BIT 15 Add Item Option Avollable

BIT 14 Display Items Option Available

BIT 1- 13 Future Options

BIT 0 Boolean AND (o)/oR (1) Connector

9-104

TABLE 9-10. VET (Value Eane Table)

VET (0) St&at of First Range

(1) Start of Next Range Range I

(2) Start of Next Range Range 2

(3) Start of Next Range Range 3

.(4) Start of Next Range Range 4

(5) Start of Next Range Range 5

(8) Start of Next Range Range 8

(7) Start of Next Range Range 7

(8) Start of Next Range Range 8

TABLE 9-11. TERM ENCODING TABLE (TET)

NAME ICC FILE C
BTZER 1.1.2.R.5

COST 1. 1.2.R.6.R.3

DESCRWTON i.i.L.R.4

DUE DATE 1. 1.2. R. 2

ORDER LIST 1.i.3.R.4

P. 0. NO. .1.2..R. 1
1.1.3. R. 4. R. 1

P. O. VALUE 1.1. 2. R.3

PART 1.1.1

PART LIST 1.1.2. R. 6

PART NO. 1.1.1. R. 1
1. 1.2. R. 6. R.I

PRICE i. i. R. 3

PRODUCTION INFORMATION 1.8

PURCHASE ORDER 1.. 2

PURCHASING INFORMATION 1.1

QUANTITY 1.1.2. R. 6.R. 2

RELIABILITY INFORMATION 1.5

VENDOR 1.1. 2. R.4
1.1.3

VENDOR ADDRESS 1.1. 3. R. 3

VENDOR NAME 1. 1. 3. R. 2

VENDOR NO. 1.1.1. R. 2
1. 1.,3. R. 1

1*

.1

9.7 TIMING ESTIMATES

The foliowing p~ragraphs demonstrate the time required to get from one dis-
play to the nrsxt. In order to create a display, tle following steps are required:

(1) Ltetriev3 Node IL Enty I.ITis step is only required for
the first displa -of su tems of a node item. This sub-
routine will retrieve the IL entry of the DWT Node ICC,
It will then store the record num~mr in the DWT, place
the typ anld index indicator in the DWT, and put the
size of the node Into the CW,.

(2) !pro* 1C.C's and Get IL Entries. This subroutine will
use the DWT to ;iaei Etiet n C, and, by checring

the ML containing th~e record numb~er of the desired ICC
is ir. memory. If so, rtloo~te of the IL entr'y in per-

Unmd;I ct. it retieove of the IL emkry is performed.
In eitbar case, such Item~s as the record num~ber, type,
and index tndizat~r of ibe TCC ame placed in the DWT.
The node- size is decreimented by one. This is done for
UP to eighit ICC';.

(3) et M t Bufer.This suibroutine searches the Term

adds th apropriate essage.

The timing estimates for these threc routinis are:

(1) Retrieve Node IL Entfy (Figare 9-25). This routine
puts information about the parent node ICC of the DWT
into the DWT.

One Retrieval. = R

One Locate IL L; L 3 mec.

One Retrieve IL = 2R+ L

Table Update = 1 msec.

Time = (2R+ L)+ 1; L 3

2R+ 4

= 2 (R + 2)o

Exunple:

If R 250 m;ec.

Time 2 OR + 21

2 (252)

504 miec.

(2) Create ICC's and Get IL Entries (Figure 9-26). This
routine puts the next set of record numbcrs into the
DWT, by creating the appropriate ICC's.

One Retrtevql R

One Locate IL L; L 3 meet.

One Retrieve IL = •I4 L

Table Updates 1 msec/entry

No. of Entries in rable (Maximum of 8) = N

Maximum Time N(2R + L) + N(1)

- N(2R+ L+ 1); L 3

N(2R + 4)

= 2N(R +2)

9-108

,.,.

Example:

i UN = 8, andR 50 msec;

Maximum Ttme 2N(R + 2)

= 4032 mseo.

Average Time:

1/4 of acoesses = Retrieve M,

3/4 of acoesess = Locate IL

N 3N
i (2R + 4 + T(L) + N(1)

N
= 1 (2R+ L+ 3L+ 4)

N
N(2R+4L+4)

N
N (R+2L+2); L = 3

N
1 1(R +8).

Exal .ple:

a! N = 8, and R = 250 msec;

NAverage Time = (R + 8)

= 44(250+8)

= 4(258)

= 1032 misc.

(3) got U• Buffisr (rog 9-27 and 9-28). ris
ro,,fe sets up the acidS =men in the outpt buffer.

One IternaleegkTL 8;8Smmec.

SYI

k ,

Maximum Time N(2R + 8) + Nr + N(f)
= N(2R + S +r + 1); S= 3 •

- N(2R+ 3 + 1+ 1)

= N(2R+ 5).

Fcample:

If N= 9, and R =250 msec;
Maximum Time = N(2R + 5)

= 9(500+5)

= P,(505)

= 4545 msec.

Average Time

1/2 of Seeks = R+ S
1/2 of Seeks = S

N N

- (2R+ S+ S+ 2r+ 2)

I(2 R+2S+2r+2)

SN (R + S+ r+ 1).
Example:

IfN = 9, andR = 2 50msec;

Average Time = N (R + S + r + 1)

= 9(250+3+1+1)

- 9 (253)

- 2295 mac.

After a selection by the inquirer, the dialogue must perform the following
steps so as to produce the next display:

(1) Retrieve Node IL Entry (Optional).

(2) Create ICC's and Get IL Entries.

(3) Set Up Output Buffer.

As can be seen in Table 9-12, the range of time required for a new screen

display, after a selection has been made, is approximately three seconds to nine seconds.

9-111

I

4. ::)

"P4

04 04

&I~~~0 0 M --

+

0.0

b~4a

9-112

9.8 TECHNICAL NOTE ON POPULATION ESTIMATE%'

Plans for the dialogue procedare call for a system estimate of the probable

number of items which satisfy the condition developed in Phase 2. In the course of the

design, it became clear that an estimate based on the information available in the DM-I

directory would be likely to grossly overstate the probable population. Current plans

for the implementation of the Dialogue Query job include the display of an upper bound

for the number of items which meet the condition. The value of this upper bound is

questionable, since it is frequently orders of magnitude greater than the actual num-

ber of items which meet the condition.

A reliable estimate of the probable population is a valuable piece of informa-

tion for the inquirer. A small estimate might save the user the extra work of exhaustive

specification of the restrictions. A large estimate might warn him that further restric-

tions are required. The upper bound, which can actaslly be presented to the inquirer,

is not nearly so useful, because the inquirer will be justified in having little confidence

in it.

- 9-113

9.8.1 Population Estimate With a One-Level File

A mistake was made in viewing the DM-I data pool as a single-level file (

when the plans for developing a population estimate were established. With euch

a file, a reliable estimate based on the information in the DM-4 directories can be

developed.

If the fields used in a condition are all indexed by value, the number of

records meeting each primitive condition is available in the index tables. A primitive

condition consists of a field name, a relation, and a test value. For indexed fields,

each of the field's values is maintained in an index table with a list of the record

numbers where the value occurs. The number of records which meet a primitive

condition can be obtained directly from the index tables.

In general, the condition combines primitive conditions with the logical

operators AND and OR. An estimate of the number of records which meet the total

condition can be obtained by the following steps:

(1) Convert the number of records for each primitive condition into a
percentage by dividing by the total number of records in the data
pool,

(2) Convert each AND in the condition to the operation multiply,
convert each OR to the operation add, and replace each primitive
term with the percentage obtained in (1). This converts the
condition from a parenthetic.logical expression to an arithmetic
expression.

(3) Calculate the value of the arithmetic expression developed from
the condition in Step (2).

(4) Multiply this result by the total number of records ir the data
pool. The resulting number is an estimate of the number of
records which meet the total condition.

This estimate Is based on the assumption that the probability that any

primitive term Is met by a record is equal to the percentage of records in the file

which meet the condition. Also, the probability of meeting a primitive condition is

assumed to be independent of the probability that any other condition is met. These

S;sumptions are invalid, since the values for one attribute of a record ai,. usually

related to the values for other attributes. For example, suppose that one-third of

9-114

L-

the records of a personnel Ml6 are for engineers and one-half of the records are for

people without college degrees. It does not necessarily follow that one-sixth (1/3

times 1/2) of the records, are for engineers without college degrees. However, the

assumptions are ussfui because they lead to a decent ballpark estimate most of the

time.

A reasonable upper limit for the number of records which meet the total

condition can be ,obtained far the singlk-level file. When two terms of a condition

are connected by AND, the maximum number of records which could meet the combined

term is the sum of the numbers met by the individual terms. If condition A is met in

50 records and condition B is met in 40 records, at nmost 90 records meet one condition

or the other (some might meet both conditions). These rules can be used in developing

an upper limit for the number of records of the single-level file which meet the

condition.

9.8.2 The Situation With Multilevel Structures

The rules for calculating an estimated population and an upper bound

break down-when they are applied to a multilevel structure. When files may be embedded

within the records of higher level files, the number of records meeting the conditions

of the primitive terms may apply to various fries. These numbers cannot be manipu-

lated as in a single-level file.

Several alternatives were investtgated in an attempt to overcome this

difficulty. Any approach whic' uees the information available in the DM-1 index

tabi6s, without a severe amount of processing, results in an estimate which misses

the mark by a wide margin for naost situations. A suitable estimate ,an be developed

for indexed fields only by actually performing the list processing of the search-strategy

algorithm in the Conditional Search routine. This requires an undesirable amount of

computer time for an inquirer who is performing a dialogue.

The search-strategy algorithm will be incorporated as an option in the

Dialogue Query job. It will take much loss time to develop the list of the records which

meet the condition than to retrieve and display them all. In general, however, this

operation will take more time than is suitable for mau-machine interaction in a

dialogue.

9-115

APPENDIX A. RELIABILITY CENTRAL TEST OPERATION

A. 1 TEST OPERATION FUNCTIONAL REQUIREMENTS

A. 1.1 Definiti.n

The Reliability Central will be a centralized clearing house which wM collect,

organize, analyze, and store parts reliability information and serve as a source of

reliability knowledge for users. The primary objective of the Reliability Central will

be to improve the reluability of Air Force equipment.

The Rome Air Development Center proposes to demonstrate the validity of the

Reliability Central concept and the feasibility and potential of its full-scale opert ion

by implementing % Test Operation of sufficient scope to exercise all functions to be

involved in the fully operational system.

A. 1.2 General Requirements

The requirements of the Test Operation for equipment and software support

are based on the need to develop, manage, and exploit a large and complex data base.

A-i

The DM-l system provides the manipulative facilities required for the Test Operation.

It must be used in a suitable hardware and software environment so that its facilities

can be exploited in support of the Test Operation.

The equipment to be used for the Test Operation is to be supplied by the Rome

Air Development Center (RADC). The major componentp are an M1218 computer and a

large capacity bulk storage system. The output devices required for the products of the

Test Operation are a line printer and a plotter. The characteristics of the equipment

which is made available by RADC will influence the formats of the producLs of the Test

Operation. The Query-Response Communications Console (QRCC) will be used for job

initiation and communication between DM-l and the system operators.

RADC will also supply the software background required by DM- 1 in its role

as the Test Operation data management system. The major software elemente are the

M1218 operating system, a storage system for the management of auxiliary storage,

and programming language processors. The operating system is the Mobile Wing

Executive Control Program (MW ECF). The programming language processors re-

quired are a JOVIAL compiler and a TRIM assembler. In addition, the utility programs

required to deal with peripheral devices will be supplied by RADC. These routines

provide for the transfer of data blocks among storage devices and for the display, printing,

and plotting of system outputs prepared according to the conventions of the atilities.

A. 1. 3 Storage Requirement

The DM-I data pool is segmented into many blocks of 512 eighteeii-bit words.

These blocks are stored in auxiliary bulk storage. Part of the software background

usupplied by RADC is a storage system which manages the storage atd retrieval of data

blocks in the auxiliary bulk storage. It it estimated that the storage system will have
to accommodate behv3en 35, 000 and 50, 000 data blocks for the Test Operation,

Each jata block is assigned a symlt:olc name which is used by DM-1 when it

requests the block through the storage system. The syrmbolic nanmes are arbitrarijy

assigned nine character symbols.

The DM-1 system reads and writes segments through the facilities of the

storage systems. The following operations are required:

A-2

(1) Write a seoment. A segment in memory Is transferred to some
permanent s r e outsids mounory. Te DM-I aystem specifies
the location of the segment in memory. A segpent name is assigned
by DM-1 or ,rctorned by the storage system. The segment name is
maintataed by DM-A in an index, the Segment Name List tSNL),
which tranalates D.M-l data identifiers (IPC) to segment names.

(•) Read a soent. A previously written segment is transfe,'red to
memory m external storage. The DM-l system specifies the
segmont name and the location in memory.

(3) Delete a s . A segment name is released by the DM-l syitem.
This shouldeleae st orage space in the bulk memory to be used
for some other seguient with- some other name at the discretion of
the storage system. This is the concern of the storage system.
However, the DM-1 system assumes no responsibility for conserva-
tive use of segment names; names should be arbitrary and independent
of bulk storage locations.

(4) Replace a segment. A segz -ant from main memony replaces a seg-
men-dLabulk storage. The segment name remains unchanged. The
DM-1 system supplies the location of the new segment and the seg-
ment name.

A. 2 ADPS INT!3RFACE WITH THE M1215 COMPUTER AND OPERATING SYSTEM

The Reliability Central test operation wilh use the MI 216 computer as its

data processing facility. The Reliability Central ADPS will operate on the M1218 through

an interface with the RADC Mobile Wing Executive Control Program (MW ECP).

A. 2.1 The M1218 Computer

The M1218 is a medium-scale, binary cooputer. It is a modified UNIVAC 1218

Digital Data Compu&'er. The AN 218 has 32,768 eighteen-bit words of addressable

memory and a four microsecond core memory cycle. It has & limited instruction

repertoire, but combinations of Uesic instructions provide programming flexibility for

logical and mathemartnatal conpuLatons. Floating point operations can be accommodate:i

through subro:tines. Thore are eight Inat-output channels and an Interleaving technique

provides for budfered Input-output operationp.

The maor ao4tiioion which cserentiatem the M1213 from the 121$ 1s the

division of the M1218 meryy into eight 8, 192-word sectors callod interlace&. One

interlace is designated as tLe executive interlace and prgrams operating there can

A

.

perform such operating system functions as Input-output initiation, interrupt answering,

and special register setting and modification. Programas in the executive interlace

and in other interlaces designated by the executiva program can read and write all

areas of the M1218 memory. Progrems in all other interlaces are prohibited by a hard-

ware register, the Jam Address Register (JAR), from reading or writing memory areas

outside their own interlace. This memory protection is accomplished by the jammer, a

computer circuit which constrains all n'emory referenceu to the interlace from which

they are made by jamming the three bits that represent tle interlace into all addresses.

Since the memory of the standard 1218 is divided into eight banks, the further

division of the M1218 memory into eight interlaces produces 64 segmnents of 512 worIs

each. Each interlace consists of seven full segments and half of an eighth segment.

A.2.2 TheMWECP

Figure A-1 is a diagram of the flow of control through the MWV ECP. When

an operator depresses a parameter button at 'the QRCC, the Console Interrupt Control

Program receives control through a hardware interrupt of the running program. The

depression of the parameter button is interpreted as a job parameter and the interrupt

word is stored for the job's interpretation. If the operator at the QRCC has pressed

the "reset" button before depressing a parameter botton, the depression of the para-

meter button is interpreted as a job request, and the interrmpt word, specifying the con-

sole and the button, is stored in the request table. Then the Switcher selects the function
or job which is to take control.

Every two seconds, a real-time clock (RTC) interrupt occurs. The RTC

Interrupt Control Program places the Request Processor into the "xvitcher's queue

and exits to the Switcher. When the Request Processor gets control, it checks the re-

quest table. If any job requestb have been made, the Request Frocessor retrieves the

program select switch table for the requesting, console to determinc which job was re-
quested. It builds the Processfug Priority Table for the job, enters the Scheduling

Processor into the Switcher's queue, and exits to the Switcher.

When the Scheduling Processor gets control, It determ!nes whether memory

is available. If not, no job can be scheduled, When a job terminates, the Scheduling

A-4

Pr~,cessor will get -,ontrol again. When mnemory ia availabie, the. Scheduling Prooesor

determines whic-a job In the i~rocessing Priority rable ahould be ad hosed orn Its

scheduling algorithm. The algorithm attempts to advaztce each requested Operatt"on

seique"ce by one atop before selecting another step from tht) oarre coperattun, sequience.

The cbaiten job Is developed Into the scheduling table, assigned lie reqae~end diev. ar'eas,

Wnd loaded hby the loader. It in then an eligible member of the 8witcher's queut., and it

receives centrol when conditions permit.

During its operation, the uiser job -makes requests u." the CPthrough a

Return-.ti--Executive interrukpt after placing the appropriate operation C;odeO ia the

accumulator. When the service rouitne takes control, it respondo to the joý ' request.

An lJ/O request cause-m an entry into the 1/0 queue for t0* :Wrapriutie ohmn ie!. If the

chaunel to not currently busy, the I/O Pra'cessor initiates the request tmnnv'diately. If

the channel is buoy, the I/O operation will be Initiated when ita I/0 queue ent.:, L'" Pushed

up by the I/O InerrujA Control Processor, after an I/0 complatlon 1nterripir on the

appropriate channel.

The job remains eligible for the processor in the Swltoher's queue, even Otfter it

has requested ain executive ser-rce. When it must have the results of the request to

coa~lnue (e. g., the data from tin 1/0 request), It issuefs a completion check request. Zf
the requested operation has not been completed, the job is irsrked an blocked, pending

completion. It remains in that state until tb-, requested eveni -ceUre and Ito. eligibility

code to changed by the appropriate executive routine.

A. 2.3 The ADPS Job EnvIronment In the MW ECP

A key factor in defining the relationship of the ADPS to the MW ECP to the way

the Ml316 memory is interlaced. The characteristics of a job within the MW ECP hinge

on this aspect of the hardware.

Figure A-2(b) representh the M1218's9 memory as a large oquare. The aquare

is divided into eight horizontal slices (rowis) by the eight memory banks. Memory bank

%contains memory locations %0000 through 0-7777; bank I .oontafts 1~00%-17777; bank 2

contains 2000-27777; etc. The memory bs;;K is defined ILy the high-order octal digit

of the address. The squa~re in Figure A-2 is divided Into eight vertical slicbs (columns)

A-6

-C 0'

~ :~ ____A

L' 1- (.1

I 6
I J

cI rb j . WC0

F77
~L. ~- 3g

C I u

*r 0

A4V

(a) ECP MAmory Resideuice

1iaoc1 lix xxx2 1XXac4 1,ox4 IXILX& Ixxx6 Iuic7X

2mao 2=1 22 2=3x 2xxx4 2= 6 2=6 2Xxx ell

3=0 3xxx! ftw2 3xxxx' 3)=c4 31m5 3= 3XGK7

4xxcd 4xxxl 4xxx2 4xxx3 4m4a 4xx5 4=8 4xxc7

5=10 5'xx.1 5=2 5XXi%3 5Xioc4 5z~xb 5ox=6 5&=7

SxzO 03= 6xxx2 8xxoc3 61=a4 6=o~5 x6--6 - -7 -

7=0 lxxxIX,. 7m3 7xw 7=7:

01 2 3 4 5 i7j

f 4- INTEFIACEB -

(b) 64 Memory Bepmenits

rture A-2. MiI 2 Memoy Seg~mathtion

A-7

I

hy tte eight Int-riaces. inteerla~e 0 contains all addresses ending in 0; interlace I

contains addres jes ending in 1; etc, This two dimensional division cf mnemnory create" (

64 memory aegments of 512 words each. AAs shown in Figure A-2(b), each segment

contains addrees,.i with a fixed high-order digit whic or-esponds to the memory bank

andA a fixed low order digit which corresponds to the interlace. 7he other three digits

range from 00$ to 777-

Eatn of the eight interlaces nonta-ins eight segments and is separated himctionally

from the other interlaces by hardware constraints.

The MW ECP occupies four interlaces and a portion of memory bank $ in

each of the other four. Figure A-2(a) shows the region of -, ,,vupied by the MW

ECP by croesshatching. Th, narrow strip across the tod of the figure corresponds to the

portion of memory banxk 0 whilJch is re•-•ered for the executive. Memory bank 0 differs

frcm the other memory banks because it is not completely interlaced. Figure A-3 shows

the configuratLin of memory bank 0.

Addresses 0 - 777 Not
Addresses 1000 - 1777 Interlaced

2xxO 2xxl 2xx2 2xx3 2xx4 2xx5 2xx6 2xx7 Resored
3ng 3xxl 3XT.2 3xx3 3xx4 3xx5 3xx6 3xx7
4xxO 4xxl 4=x2 4xx3 4-'x4 4=x5 4xx6 4xx7
5xx% 5xxl 5xx2 5xx3 bxx4 5xx5 5xx6 5xx7 Scratch PSa'
6xxO 6xxl 6xx2 6xx3 6xx4 6xx5 6xx6 6xx7 Area
7xx% 7xxl 7xx2 7xx3 7xx4 7xx5 7xx6 7xx7

2 3 4 5 6 7

* - INTERLACES - 0

Figure A-3. Memory Bank 0

The first 1024 memory locations (addresses 0 through 1777) are not interlaced.

They are used for operamlng system purposes. The remainder of memory bank 0 is
interlaced. However, the first 128 words (addresses !140 through 3771) are reserved for

executive purposes; the eight index registers for each interlace are in this area. The

next 256 words (addresses 4001 through 7771) are called the wcia-ch pad area.

The MW ECP is de&LOW to cortroL Jobs which can funaction In one interlace.

Provision is made for multi-Interlace Jobs, but there are several reotrictions on the

A-4

............

(meuthods of comr-iunication across intertaces. The object cod~e od a job may be load~ed

into &w. #*yen segmeen-t of the. Interlace which oorrea =d to memory -baks I through

7. Pro~rams amr segmenlted tntw 0512-word flosas which t'. 4into a segrment. Data is
transmitted between prograxas Wn the bulk, random-access storage in 512-word

segments. Thus, v. f-.4-c'l job uses a 512-word segment for each irnp-ut-cuit element.
and the remaining segments for pro,-ram code. The scratch pad area (256 words of

memory bank 0) may be used for temporary woriing space.

The programming language processors provide facilities for squeezing Jlare
progranms Into a single interlace. They generate a Local Control Routine (LCR) which
occupies one segment and manages the swapping of floatable code and data between the
other six cagments and auxiliary storage. This to.,1mlque permits large programs to be
wriftten irlthout concern for the limited memory space, but it result. Ln a very inefficient

exiecution in cases where large tableh. Are accessed randomly or a large number of data-
dependent paths exist In the logic of the program.

A second key factor in defining the relationship of the ADPS to the MW ECP is
the mechanism of control of random-access storage used by the MW EC P. The discI
"file in divided Into 1024 symbolIcally-addressable seementa aM 2(04ý ;*;...iedi

D#zataase. Two kinds of oymbolically-addressable segments provide for the random
access requirements of Jobs. They are: permanent are'u and temporary areas.

Pemanent are as are sassigned to designated jobs in named blocks of eight
512-word segments. The assignments are made by an executive action taken by die
system supervisor who plays a vital role in setting many system parameters. The

jobs reference the segments In their permanent areas by the symbolic name and a sub-
iL script which Identifies one of the eight sagments. This means that the symbolic name

must be negotiated when the program Is written.

Temporary areas arm aleo assigned In blocks of eight 512-word segments.
Names for these areas are assigned iky the programmer. The language processors
convert all temporary area names to logical numbers and specify the number of

temporary areas required by a program in a control block which preced~,s the obect
code. Wbw a program iuloaded, the MW ECP asuigns disc areas to serve as the

Viogrem's temporary area.

The database area 's treated like a larc permanent area. The eystam sow-

visor designatem the jobs which may read and write the database area. Individual segments

are referenced by a -number which designates the iogical location co the segment in the

database area. This approach treats the database area ac a physical storage device with

addresses 0 through 2047. Th" . rn2emert of this area is the responsibility of the jobs

which use it.

The third major fawtor which affects the ADPS job envircnment in the MW ECP

is the operating system's conventions regarding jobe. These conventions are described

in the following statements:

(1) A job is the basic unit of work. The MW ", maintains a library
of the soarce language for each job and another library of the
generated language produced by the language processors. The
basic job Is a set of pk-ograzrs designed to operate in one inter-
lace with data references to temporary and permanent disc areas.

(2) Jobs may be linked into operation sequences. The sequence is a
list of jobs to be executed serially. The jobs in the sequence are
normally written to operate together, since the MW ECP makes
no provision for relating the inputs and outputs of different jobs in
the sequence. All jobs in the seoue,,- sah•_r_ = =. en6wwrary
areu. k

(3) Operation sequences are defined by the system supervisor and
associated with a program selection switch on a specified QRCC con-
sole. A request to execute the operation sequence is Issued from the
QRCC by depressing the prcgra- sele(At,.on switch immediately
after depressing the reset button.

A. 2.4 The Requirements of DM-l As the Reliability Central ADPS /

The DM-i system, which is to functloa as the Relila1lty Central ADPS, imposes

a set of requirements on the operating environment. These requirements are the result

of design choices, made under the direction of RADC technical rcepresentatives, which

relate to the operating environment to be provided by RADC.

The DM-1 requirements are to be met by featur of the MW ECP and by

operational features of the DM-I system itself. Most of the services required of the

MW EC P are already part of that system. However. some service" dealing with the

management of the physical store for data egments must be added to the MW ECP to

A-1O
*. ' 4 ,- r''n - - -

nuake it compatible with the operating environment guidelines defined for the DM- I

[S Y.tem by RADC. A) - , minor e-hanes to the MW EC P are requiured to provide for

teincorporation of ýae operational features which are part of the DM-l system itself.

The following list specifies the requirements of DM-l in its operation under

the MW ECP.

(1) Obect Code Storage. The programs of the DM-l system and tý%e
job~sInteste m library wll be written intheOTOVIAL 'or TRD
janguages, compiled by the appropriate language processors, and
stored in the Genera~te Language Library (GLL) of the MW ECd-.
The libraries maintained by the DM-l system contain descriptionsI
of jobs and input-output parameters. The DM-l libraries use the
MW ECP identifiers to reference the object code for the programs.

(2) i-ib Initiation, DM-l will be. a job within the MW ECP. When the
QRCC button asisociated with the DM-lI job is depressed, the MW EC P
will load the DM-l Request Proccessor- to Initiate a DM-l job.

(3) Program Loading. In the course of execution of a DM-l job, the
Sys c olVn the MW ECP to load programs. This will be
done through the Segment Load feature of the MW EC P.

(4) Daa§mtR " adWiig All segments of the DM- IdataI
includingl d)-egr~i- uirau oagments, will be etored

under the logical and physieti ornf-q91 =f *I,- MI.-W ". -- D-
WU Uw ssign a nine character name to each segment when

writing, and use that name when reading. The segment names
will be assigned at the discretion of the DM- I system. They ahould
beai no direct relation to the segments' locatins on tbe disc, and
inactive segment names should not correspond to storage locations.
These features are not included in the current veraion of the MW
ECP.

i5) ob Key Storage. In managing the flow of control among the tasks
of a DM-l jab, the Supervisor needs a small block of memory in
the scratch pad are* for job key storage. This area contains a
sot of numzbers whicb specify the DM-1 request waich occupies
the Interlace and the current status of the DM,-1 job. Nothing in
the MW ECP docuinent'astion prohibits this.

(0) Float Ib'es5momt. Most DW-I jobs require ware vsmory than the
35o4 -,M & 1Iin one Interlace. Some of the jobs can operate

one memory beak of the Interlace and mouaage the exchange of

A-l1

' .~ _...................................

program floats between the disc and the other six memory banks.
The use of the LCR createe rpu yss~ble iroblems, First, the use
of scratch pad arodat L-r job key storage might conflict with the
design of the LCR. Second, references made to program flotsa by
system components which are outside the program cannot be made
through the LCR. Some means must be devised to guarantee that the
parameter tsbles and buffer areas are in memory, when a program
calls a routine of the DM-1 Service Package.

(7) ServiPackage Loading. The DM-I Service Package requires one
interlace the system routines which serve programs in the
storage and access of data in the data pool. Some provisior must be
made to ensure that the Service Package is loaded whenever a DM-I
job is active. Several alternatives exist for checking tee presence
of the Service Package. The MW ECP could make the check and load
the Service Package, if necessary. The DM-l Request Processor
could make the check and call on the MW ECP to load the Service
Package, if necessary. The loading of the Service Package could be
part of system initiation. Each of these alternatives requires a
special status for the Service Package within the MW ECF.

(8) Service Routine Calling. The program of DM-1 jobs must be able to
caMl routimes of the Service Package. This will • done through the
normal service calls of the MW ECP. In making a normal service
call in the MW ECP, a program loads the accumulators with a code
and a pointer to a parameter packet, anr executes the Return to
Executive instruction. The Executive Control Coordinator (ECC) of
the MW ECP responds to service requests and directs control to the
appropriate routine. To accommodate the Service Package, a block
of codes will be assigned to the DM-l system. A program will call
ftr a Service Package routine by loading the accumulators and execu-
ting the Return Lo E•~cv,1"4-, instruction, as for normal service c Its.
The ECC will recognize the code as a k1.cDrm'r of the Service Package
block and direct control to the Service Package in the spec'..' DM-I
interlace. The Service Package will determine which of its routines
is needed and transfer control to the appropriate routine.

(9) Cross-Interlace Readi and Writing. DMI- jobs may be active in

many interlaces it once. The routines of the DM-l Service Package
must be reentrant so that a single copy of the Service Package can
serve all active DM-4 jobs. All storage modifications required Ln
the operation of a service routine are made in the interlace (,f the
program whteh r-Aled the routirse. The MW ECP normally prohibits
any communication across Interlace boundaries but it contains pro-
visions for permitting such communication. The DM-i Service
Package must be granted thig permission.

(10) Service Package Interruption. After responding to a hardware
interrupt, the MW ECI owitcWher may give control to any program.

A-12

01

which is reaiy. in particular, the program which va interrupted
may wot regain contlol directly after the interrupt is processed. ,
When dhe DM-l Service Package is interrupted and another program
gains conix 1, the second program may call the Service Package.
Even though tMe Service Package has not completed its opera~uon for
a previous progra,, ittca eperate for another program. No con-
fusion results Neause all parameter storage is in %he interlace of
the calling program. Reference to these parameters is made
through in.ex registers. A-9 long as the ln, ea registers and other
computer registers are sav, •d when an interrupt occurb b. 4 reetored
when control is returned to thL interrupted program, the ' 1gram
ean resume its cperation as thLbh the interrupt never occurred.
The MW EC P saves the common computer registers with each inter-
rupt and restores them before passing control to a program., However,
the Ldex registers are not saved by the present version of the MW ECP,
because each interlace has its own set of eight index registers. T then
the Service Package is interrupted, the index registers will have to
be saved. Storage space in the scratch area of the interlace being
served by the Spervice Package may be used for this purpose.

(11) Service Package Block. When a program requests the status of:.
previously Initiated tnp~tkoutput operation, the MW ECP places the
program ikto a blocked state which makes it ineligible to regain
control until the operation is complete4. Since the Service Packpge
acts as an agent for other progr•am, it should never be In a blocked
state. The program for which the Bervice Package is operating should
be blocked instead.

A. 2.5 DM-l Jobs In the MW ECP

The DM-l system consists of the Supervisor, the Service Package, and a

series of jobs. The Supervisor responds to console-basei requests and managee the

transitions of control among the executive, the task program& of thb jcvaw, and the parts

of the Suiwrvisor Its-•5 . T!:: Sai e mckage acts as an agent for job programs in

dealing with the dWa pool. The jobs perform the work requested by users at consoles.

"During the exeuutlon of a job, the routines of the Service Package mus be

xvaile• e to the job. They ;auat be resident In the twain memory of the M1I28. A ainoe

reentrat copy of the Service Package can serve the several jobs which share ie M1218

at once. The Service Package occupies one Interlace and job programs ocupy the

other interlace@.

When a user wants to execute a job In the DM-l library, be types a job run

zrquest on the QRCC. When Li Is satiated wmth the request, he depresse the one

A-13

prganselect button whicat is assigned to DM-1. The following sequence of operations
ta-splace du~big the execution of the job:

()The ECP places the; DAVI-1 job (a singlc- job from the ECP's
viewpoint) into IL, Processing Priority Tiable.

(2) When ali interlace Is available, the ECP assigns it to DM-l, loads
the -,ob and gives it control. The code loaded is actually a boot-
etrap prreramn which is part of the DDA-1 Supervisor.

(31) After some initialization, the bootuitrap prograri calls on the
ECP to load the Request Processor, a~nother part. o' 'he Super-
visor.

(4) The Request Processor rea&t.. "he console message (a job rutn
request), decodes it, a.-,d builds i. request record containing a
Task List, wl~ich defines the sequent - of programs from the
DM-1 libra-y, to be executed In response to the user's request.

(5) When the Request Processor Terminatef3, the Tas!V Teruiinabe
-nutf another part of the - djervlsor, reads the first entr-
in thý "list to determine which program shou'd be wA it, d.
It cab lie ECP to load Tihis prograin and gives it conti

(6) When the Task Terminate routine reaches the end of the Task4
List, it terminates the jrb and returns to the ECP.

These steps are taken in one interlace. The Supervisor and job programsi use the

Service Package routines -which reside in another ir~teriace. Meantime, similar se-

quences of eventO can take place in the remaining 'interiares in response to other re-

quests issued from consoleA. With four iiit,3rlaces, three DM-l jobs can share the

M1218 at once.

A. 3 DATA CONVwI"RSION

Data for the Reliability Central data base has [jeer, coilected by the Illinois

Institute of Technology Research Institute (ITTRI) under Con_.act AF30(6()2)-3621. In

crdditLmn, a large volume of reliability data has been collected by Autonetics as part of

the hMinuteman Proiect. These two sets of data must be converted into the Internal

Data bengage (WDL) of DIM-l and entered into the Test Operation data base.

A. 3. 1 The Reliability Central Data Entry and Conversion System

The Data Entry and Canversion yftern in an interim system for the prepara-

tion of a dat base for the Test Operation of the Reliability Central, It prepares the data

A-

for the Reliability Central Information Manasgement System to be implemented by

AUERBACH Corporation under a subcon tract with =71'

The aystem Is designed for large-saec~etoerrdtcinn cor-
rection, and conversion of the data assembled, struictured and transcribed to Wlunhe
cards by IITIU. Its goal is the development of an Initial data base in the Inter~a1

Data Languatge (1iDL) of the Information Management System. IDL le- a machine-inde-

penident string of binary bits whose structure is stated In an i~dependent directory.

It is segmented so that It can be *stored on random-acces~s devices in a flexible and

acceasible form.

A, 3. 1. 1 System. Operation. The sysitem consists of four programs. Figure A-4 is a
siroplifted chart of the i~elationshipb among the programs.

The inpuzt card deck contains daflnition eards, data cards, and correction

cpxrcb. Each definition describes the structure fo9r some class of data. It expresse's the

relationships among items of data in the claea. Definitions are developed by analysis

of hard copy source documents to prepare data for the predicted processing. Data cards

contain items of data tr anscribed from the source documents. They belong to some class

of data~ and are prepared to fit the definition for that class. Correction cards specify

changas to be made to cards on the data basb tape. They ace prepared to correct errors

detected by the Batch Update program and reported on the errnr listing.

The 1401 Card-to-Tape program transfers the cards to moguetic tape, pr'-

&iaces a reference listing, and detects syntactic eriors. The emphasis in error tietection

is on definition cards and identity errorm which could cause major problems if permitted

to pass to later states in the orocess. The '-lid cards are written onto the unsorted

batch tape.

The 1604-B Sort produces the sorted bawhi tape, placing the card images in

order by class and Itwu idmutifter. The program is the 1604 Sort supplied by the vendor.

'rhe Batch Update program maintains the card image data base file in order by
class and item identifier. It merges the new data from the sorted batch tapc with the

-existing data on the data base tape to produce an updated data base tape. In merging,

it perorms the corrections to the data base tape req sated on the batch tape. A". now

'Oe

CARD

DALNTAON PROGRAM SRE
BATA ______BATCH

TAPE

OLD BAC NEW

DAT UPDTEAT

dafta cards and any old cards affectad by change. are ohoked splast the deftalton for

1'c the apropriate clue. Errors detected are repwW~ on the nonr hiftin7g.

Any tlass of data containing no arrorp ray be cmonezted to InterWa Data.

Languagis by the Comvrslon to IDL program. Tbe pmr~gaw saeft the rwqne#We cat
ronthe data beow file, oorv~rts the defiitin to eno IJL dirm".ry sa conerts the

data from thwe ad image form to ths IL segiuented stream of bito. The dirtory

and the IDL segmats are written on the 13DL tape.

A. 3.1.2 2222t The first process In the systom to the e eotloi-n of definition and
data cards by the 1401 Card-to-Tap program. Figure A4~ shmwi the input and output
Items ansoclated with the program.

The input card deck consists of -aeveval elements. 'rhe b~deh/rn card
specifies the batch number end the run nimber for the t'ua, A buoh is & unft of data
to be passed to the B-tah Update program. Rt wr.maly consists of several collection
nina. Definition decks, if there are ozy, follow the batch/ruD card. Each definition
deck is the complete deftnition br one class ofs data The carou within a deck must be

In rde byidetiier Daa rb o~re rdividual u~nit records. They iiAy ~in any

order. For all runs except the last run in a 6atch, the ftnput dack ends with fth EOF
card folowing the data cards. For the last rim of a batch, the bath end deck and another
EOF card awe appended.

The previous run tape is a tape of the current batch prodacod by a previous

run of the Card-to-Tape program. A pmogrm option prov~e. fir the addition of this
run's cards to the previous carda of the batch,

The new run tape cnains fth rard Images copied from amy previous rin tape
followed by Owe cards from the Input dock. Only cazda which pars tbo syntactic checks
are written onto the tope.

The now batchrun card to the ow~d to Wbiused as tho batch/run card for the
nent rnm of the Card-to-Tape proplm. Ef "xi run 4a tho 4caftg run of & biatch, the new

card has an inerimaite batch number and oL rast numnbr of t. Otherwise, the new
card has the current ht"h wxber swW to inurtea run inuwhsr.

0;

EOF C-R
EOF CARD

BATCH/RUN
CARD

v~ous 1401NWPRE- CARD-TO-TAPRU

TAP PROGRAM TAPE

CARD)

LISTING

Figuire A-5., Card Colisotion In the Card-to-Tap. Program

A-10

The batch/run crds from esch run of the batch, ecept the Iast, form Me
batch end dock for the last run of the batch. This permits an accounting to take plece

C' in the Batch Update propram to ensure that the cards from all runs of the batch are
Included on the sorted batch tape, The Card-to-Tape program writes an accounting card

with each run. It writes the batch accounting cards, derived from the batch end dock,
with the last run. When the run tapes are sorted, the accounting cards sort to the frost.

The Batch Update program checks the run accounting cards agafnst the batch accounting

cards to be sure that all rune are included on the sorted batch tape.

The card listing contains all definition and data cards which were collected

by the run. The listing is identified by the batch and run numbers. The cards which

failed to pass the syntactic checks applied by the program are flagged on the listing
and rejected by the program. They are not written on the tape.

The program treats definiion decks as a unit. It applies ocwalve logical

and syntactic checks to the cards of a deftnltion. The discovery of any discrepancy

causes the rejection of the entire definition deck for that class. The checking of data

cards consists primarily of a check of the identifier.

A. 3. 1.3 Validation and Correction. The set of run tapes produced by the Card-to-Tape
program contains newclass definitions, new data cards and corrections to previously-

entered data cards. They are processed through a validation and correction cycle by

the Batch Update program. Figure A-6 is a logical data flow diagram of t-a process.

The set of run tapes fronm the same batch are sorted by the 1604 Sort program

to produce the sorted batch tape. This tape lo in the some order as the data base tape,

by Identifier within class.

The old data base tape ti the one produced by the Batch Update program when

the last batch was run. It contains all previously entered cards. Each class consists

of a class definition followed by the data cards.

The Batch UhdAe program merges the batch tape with the data base tape,
performing the actions specified by the cards on the batch tape. This corrwtacon

process is handled by the Process Batch File routine.

S0

A-19

4~ - - "sit

DATTCpBATC OT A"
TAPESAC UDT

ILI

AA-
BABE 1604

T, T 't.

APE~~~ BACHU'AE
PROCESS

BATC- L-4

ERROR
4

MEMORY~ 4J4 IN

ba parallel with thw correction process, the progrm ohecks s&&A new data
~~ card and those old data cards who"e coantt was changed by the now cards. This

valiadtou process In handled by the Oat Actve Dsa rwtine.

bTh Process BaLtc 1, rauie reda acard from the batch tape ad coes

the old data bse taW until It finds a card of the sein dlus *too* idutler I equal

to or greater than the batch'card's Identifier. In copying te dat base tape, the pro-

gram enters the definition for the batch csrd~ s c lass bno a definition table. Thio will

r. be used an a guide in checking the dea afetf by the batch card. The daft base taps

card (new data), and no card with its identifter already exists in the data base, the new

card is placed into the work area, valfids by the Output Active Data routine and

written on the now data base tape. If the batch card Is a delete card and Mhe data Wue

contains the card kidetifled, the data base Is moved forward one card to delete the ward.

The data base cards whose context Is changed by the deletion will be checked whil

positioning the data base for the ne-t batch card. The other card types, file header

entry and deleted cards and range, ielt. cards are processed similaly.

The Outprt Active Data routine chocks the new and affected cards against the

definition. It uses the Identifiers ,) keep track of the data Items in the ddenition table

am they are passed to the output data b•s. When a card is to be checked, it profiles

the daft to develop a table giving the size ad location of each field. Each field is

checked to see that it sire and character composition agree with th kdnition.

Any errors detected in either the correction or the validation process are

recorded on the error list. I•, the ooi'-reotm phime, entry of a card that already exists

in the data base, deletion of a card t.vt do" not emist or an unidentified card are

errors. The card image Is printed w4h codes specifying the errors detected.

A.3. 1• 4 t Convers Cut/elasses that passed through the Validation and Correctio
program nd contain no detected errors mq be converted to the Internal Data anguagp

(IDL). Refer to Figure A-7.

The Coaversion Prp erches seorWaly thrmo the d" be" tape for the
first requested *Wtclass TMe deninton card entries are plaod Into a table in memoory.

[*

A-2l J1

V,

Ic

RE~uija0

comio
2-

COMMONi

CONERIO

1 .U Th atIzr. 4@21mitk table is thw caiivertod seqewlaly Item DNam is Act

chaned, buzt all ofter puert ane oonverted to binary values.

Eachou~dsepraent conteans 127 definition entries amwilt the last one; that

A daft card Is read and tested for a cut/cluea matc with the request. The
item position code (UPQC of the card is converted to binary and compared to the Identity

processed last. Gaps are filled with null entries.

The card ts submitted to a routine which creates paraewters fr~r mom-soaanle

I ~ of e*O field In the string. Using the definition tables as a master temynpi , the daft
btring. aft~ cowierted to the specified radit. The converted data. It shL.-d and adusted
to conform to the defiiton spw.cification In size and value.

The outpAt routines arrange the data from the temporary hold tables to form
segments. No reference is made across segments exoW for the defintion block, which
Is a nma of the data segments.

The only error testing performed by the oonve-"lou program is the testing
of tW. data, us" error MWa area. A dafta entry with this fan Initates a delete routine
which clear the ouztput taps of all references to the deleted cut/coass.

A. 3. 2 Mutanetts Migomemn Data

The Aigonetics Mimateman data consists of 125 mapatil. tpsp %tiuch contain
reliability data. Since the data is In =Maciu r'taievabl Ionm, It ca be oonverted
&recty to EDL by a special ipurpose program,

Each mWstl~c tape 'a a Wsw~ry file which is composed of sectfins. Each
section coomftlas dafta on a sicg& group of speolmens tested under one set of stress

oeaditimn. Within wh section dmet are thre subsootiW..

(I) IU f Word moRewk This Is a peep df mixteen Whi*t words

(2) MW h1flt~a~m ThUis s alkaIIIz matrix '"Il words)
6AMIUAWP"*4 tMad wone measured 40rla

* ~~-28 --

tho test and the readout time at which they were m ý The
wftrs row oi Uw mstrix specifies the readout time. The bjt*

column Iw W the e were minuuawd The
tei"r pai-,Ions In thi m•trix onmtin a zero I the row parameer

was menaured St the ooluiw readout time or a one Hf the paameter
was not measured. Unused positions in the matrix are filled wih
dummy indicators.

(3) The Data .oo_ This subsecton contains the actual data values
in a large matrix whose rows contai the matrix defined by the
Time-P•amtr Record. There Is one such matrix for eatih
specimen tested.

A. 3.3 Conversion of Autonetics Minuteman Data

Each section of the Autonetics Mlnute"'an daýa - to a est file

in the Reliability Central daft base. There is an approprlate file for each type of

test in the data structure defined by YITRI. A special-purpose program will be writm

during the Test Operation implementaton to convert selected sections to IDL under tbe

directien of the existing definitions.

Header information corresponding to the tests represented in the Autonetis

Minuteman data sectonz will be entered manually through the Reliability Central Data

Entry and Conversion System. At the points in the manually entered data where a test

file fits, the IDL Conversion program will provide for the merging of the IDL segmnts

which were produced by the Autonetics Minuteman Conversion program. With this

agpproach, the oonversion of the manual data is independent of the convers:. of the

AuMonstIcs Minuteman data. Each ppit is related to Lte other by the IPC of the IDL

segmie&s. When the IDL data from the two souroes is entered Into the M1218 Relisbilfty

Central daa bae, on integrated data base will exst.

A--.

rW7

i: !
S" _ _ _ _ _ _ _ _ _ _ _ _

APPENDIX B. RELIABILITY CENTRAL SCHEDULED OUTPUTS

Eleven basic outputs ýof Reliability Central are planned for the Test Oper-

ation. Although they :are separate products, the eleven outputs are not -independent.

They s-hare common routines, and some ,outputs require summary information pro-

duced by others. The key components of the scheduled outputs are a set ,of general-

purpose analytic programs. These are combined withdata processing programs to

produce the job descriptions for the eleven outputs. The system facilities of DM-.

provide the framework for the selection of data Ior these jobs and control over their

execution.

B. 1 OUTPUTS FOR TEST OPERATION

,,he eleven scheduled outputs planned for the Test Operation are defined in

C.TDR-85, Development of a Detailed. Plan for a Reliabll "y Central, February,

pru.ec1)azd by lUT Research Instiltue on Cont:ract AF30MOOZ)-3426. Zhe f.iloving

.. ntain a brief definition of each c^ the outpu,r.•.

'Data ýon *tests perf ormed under ,given stress conditions ýor, perf ormance

data~nder perational ~stress is tused ito ddtermine the failure raefospcie

icom~ponents.. The regresslon coeffidients if or ~median f allure rate versus stress

7are developed whenev~er ithere Is ýsufficient data.

B. 1.2 Part failure Ddstribution.Analysis

Lgboratory life -test data on component parts is used to determine ithe

parametric distribution of component failures. 'This shows whether part~f allure

*rates increase, remain fconstant, or decrease with time.

B. 1. 3 Part Parameter Drift and -Steability ýVersus Stress and '.TIme

A series -of plots and histograms are -developed to: show how a component

parameter . aries with time. The plots are developed f rom the lift test data -and

environmental test data available inithe Data Base. 'Gradual changes In a-parameter

under a given stress are a measure of -drift. More abrupt, dhanges, 'brought -about

by high-stress applications., are a. measure of stability.

B .1. 4 Part Failure ModeSummar

Data on the applied stress conditions underbwhhifh failures -were -observed
is used to produce summaries defining the nnimber of failures -which occurred under

each observed mode and set of stress ýconditicrns,.

A list la -periodically 1 poducedoof tthose 1paarts..,on \vWidh fJWIdblidty eta

'has a. eufficient volume of documented relidk41lty test (data tto warrant ýa eas anidble

level of confidence in ithexeGURtS reported An the reliability analyses -performed.

A li1st is periodically jjroduced of Itbse ýparts f or which properly vL~didated

test data ~Is on file in the Reliability Central Data Base.

B. 1. 7 P art Application Data :Summaries

These summaries contain data ýon the capabilities and I imitations of parts.

The :kppl ication experience data and test data is used to dlevelop summaries on major

Best Available Copy

